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Need of Dark Matter at Different Scales
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Need of Dark Matter at Different Scales

Small Scales (~1- 100 kpc) Intermediate Scales (~1 5 Mpco) Large Scales (> 100 Mpc)

Rotatlon Supported
(splrals & dwarf irre

Taslod Galaxy Groups: '«

o Andromeds; BT — g Stepilan;é Quintet

This 1s not direct evidence for particle dark matter!

Current Gravitational Laws (Einstein & Newton) +
Standard Model ot Particle Physics = Do NOT work



Baker+2015 . Probing Gravity at All Scales
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Baker+2015 . Probing Gravity at All Scales

For particles orbiting a point mass M:

r 4 In a log-log plot, this 1s a line
g with fixed slope of 3 and

G M* normalization given by M
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" Baker+2015 4Bl Probing Gravity at All Scales

For particles orbiting a point mass M:

Satellite \/7 4 In a log-log plot, this 1s a line
g (M ) &> with fixed slope of 3 and
G M* normalization given by M

General Relativity has been well tested

Curvature

Cstscattering & 7" at high curvatures (strong Gravity).

\CMB peaks

G ) pcmmrs Dark Matter and Dark Energy arise
at low curvatures (weak Gravity).
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Baker+2015 . Probing Gravity at All Scales

For particles orbiting a point mass M:

Satellite

r 4 In a log-log plot, this 1s a line

® g (M) g with fixed slope of 3 and
S G M* normalization given by M
o
=
2
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Last scattering ’ DM appears below a characteristic
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Einstein-Dilaton- Cascading gravity Tessa Baker prentmiiien, . Corformal gravicy Many VECTIS101S Of

Gauss-Bonnet
Horava-Lifschitz . .
\ ‘ Modified Gravity to

Strings & Branes R, O 1R f(G)
\ ser N3 i
| explain DM or DE

Some

DGP

Randall-Sundrum | & Il [ 2T omsity \ degravit?ition Higher—order . .
. . foe /\ (each one with its own

Higher dimensions Non-local General RiRW, :

/(R serious problems).

Kaluza}-KIein \ ORetc.
Modified Gravity Vector This lecture Wll.l NOT
Einstein-Aether cover al] thls.

Lorentz violation

¢
Generalisations

ol Teves — Add new field content Massive gravity ,
Gauss-Bonnet \ \}ﬂa\”w I Wlll fOCllS on
Scalar-tensor & Brans-Dicke Chern-Simons Tensor . . .
Lovelock gravity Ghost condensates Cuscuton EBI Mllgromlan Dynamlcs
Galileons
the Fab Four Sca|:lr Chaplygin gases Bimetric MOND (aka MOND).
Empirically motivated
paradigm with no DM.

KGB
Alternatives to Dark Matter

Emergent

Approaches : : :
Coupled Quintessence . Einstein-Cartan-Sciama-Kibble :

Padmanabhan : :
CDT thermo. Horndeski theories T e s
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Roadmap of the Lecture
1. The general MOND paradigm

2. Non-relativistic MOND theories

3. Relativistic MOND theories
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Roadmap of the Lecture
1. The general MOND paradigm

2. Non-relativistic MOND theories

3. Relativistic MOND theories
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MOND = Modified Newtonian Dynamics

or MilgrOmiaN Dynamics

Proposed by Moderhai Milgrom (1983a, b, ¢)

e MOND 1s a general paradigm that includes several theories

(at both the non-relativistic and relativistic level)

e Key distinguishing general predictions of the general MOND

Federico Lelli (INAF - Arcetri Astrophysical Observatory) Alternatives to Dark Matter



General MOND postulates (at the non-relativistic level)

1) New constant of Physics: a, (~10"° m/s*)

similar role as ¢ in Relativity and # in Quantum Mechanics
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General MOND postulates (at the non-relativistic level)

1) New constant of Physics: a, (~10"° m/s*)

similar role as ¢ in Relativity and # in Quantum Mechanics

2) For a » a,— a = g (correspondence principle as in Quantum Mechanics)
. _d°X
a=—;

dt

gy=— v ¢, Newtonian gravitational field (from the Poisson’s equation)

kinetic (observed) acceleration of a particle

Federico Lelli (INAF - Arcetri Astrophysical Observatory) Alternatives to Dark Matter



General MOND postulates (at the non-relativistic level)

1) New constant of Physics: a, (~10"° m/s*)

similar role as ¢ in Relativity and # in Quantum Mechanics

2) For a » a,— a = g (correspondence principle as in Quantum Mechanics)
. _d’%
a=—"

dt”
gy=—V ¢, Newtonian gravitational field (from the Poisson’s equation)

kinetic (observed) acceleration of a particle

3) For a « a,— scale invariance (Milgrom 2009): (X,t)=>(AX, A\ t)
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General MOND postulates (at the non-relativistic level)

1) New constant of Physics: a, (~10"° m/s*)

similar role as ¢ in Relativity and # in Quantum Mechanics

2) For a » a,— a = g (correspondence principle as in Quantum Mechanics)
. _d’%
a=—"

dt”
gy=—V ¢, Newtonian gravitational field (from the Poisson’s equation)

kinetic (observed) acceleration of a particle

3) For a « a,— scale invariance (Milgrom 2009): (X,t)=>(AX, A\ t)
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Circular orbit at large R
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General MOND postulates (at the non-relativistic level)

1) New constant of Physics: a, (~10"° m/s*)

similar role as ¢ in Relativity and # in Quantum Mechanics

2) For a » a,— a = g (correspondence principle as in Quantum Mechanics)
. _d’%
a=—"

dt”
gy=—V ¢, Newtonian gravitational field (from the Poisson’s equation)

kinetic (observed) acceleration of a particle

3) For a « a,— scale invariance (Milgrom 2009): (X,t)=>(AX, A\ t)

v: |a,GM
=g f:\/ 'l

Circular orbit at large R
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General MOND postulates (at the non-relativistic level)

1) New constant of Physics: a, (~10"° m/s*)

similar role as ¢ in Relativity and # in Quantum Mechanics

2) For a » a,— a = g (correspondence principle as in Quantum Mechanics)
. _d’%
a=—"

dt”
gy=—V ¢, Newtonian gravitational field (from the Poisson’s equation)

kinetic (observed) acceleration of a particle

3) For a « a,— scale invariance (Milgrom 2009): (X,t)=>(AX, A\ t)

iy v: |a,GM,
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Circular orbit at large R Flat rotation curve!
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General MOND postulates (at the non-relativistic level)

1) New constant of Physics: a, (~10"° m/s*)

similar role as ¢ in Relativity and # in Quantum Mechanics

2) For a » a,— a = g (correspondence principle as in Quantum Mechanics)
. _d’%
a=—"

dt”
gy=—V ¢, Newtonian gravitational field (from the Poisson’s equation)

kinetic (observed) acceleration of a particle

3) For a « a,— scale invariance (Milgrom 2009): (X,t)=>(AX, A\ t)

2
\V4 a,GM 4
a=+gya, Y . Vi=a,GM,
R R°
Circular orbit at large R Flat rotation curve! Baryonic Tully-Fisher Relation
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Intuitive Cartoon: Scale Invariance = Flat Rotation Curves
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A MODIFICATION OF THE NEWTONIAN DYNAMICS: IMPLICATIONS FOR GALAXIES!

Department of Physics, Weizmann Institute, Rehovot, Israel; and The Institute for Advanced Study
Received 1982 February 4; accepted 1982 December 28

I use a modified form of the Newtonian dyna
of bodies in the gravitational fields of galaxies, ¢

the following main results.

1. The Keplerian, circular velocity around a fi
thus resulting in asymptotically flat velocity cu

2. The asymptotic circular velocity (V) is det
V4 =a,GM, where a, is an acceleration constan

= | Trlogy of

M. MILGROM

) papers in 1983
L] on Apl, 270

ABSTRACT

A MODIFICATION OF THE NEWTONIAN DYNAMICS AS A POSSIBLE
ALTERNATIVE TO THE HIDDEN MASS HYPOTHESIS'

M. MiLGROM
Department of Physics, The Weizmann Institute of Science, Rehovot, Israel; and
The Institute for Advanced Study
Received 1982 February 4, accepted 1982 December 28

is consistent with the observed Tully-Fisher rel

proportional to the observable mass.
3. The discrepancy between the dynamically ¢

and the density of observed matte

4. The rotation curve of a galax
galaxy’s average surface density 2
and Freeman laws. For smaller vz

5. The value of the acceleratior
mately 2 X 10" 8(H, /50 km s~!
km s~ ! Mpc™!) cm s 2.

The main predictions are:

1. Rotation curves calculated ¢
dynamics should agree with the of

2. The V2 = a,GM relation sho

3. An analog of the Oort disc

increasing r in a predictable way.

Federico Lelli (INAF - Arcetri Astrophysical Observatory)

ABSTRACT
I consider the possibility that there is not, in fact, much hidden mass in galaxies and galaxy

A MODIFICATION OF THE NEWTONIAN DYNAMICS: IMPLICATIONS FOR GALAXY SYSTEMS!

M. MILGROM
Department of Physics, Weizmann Institute, Rehovot, Israel; and The Institute for Advanced Study
Received 1982 February 4, accepted 1982 December 28

ABSTRACT

I consider the implications of a modification of the Newtonian dynamics to galaxy systems.
Masses and mass-to-light ratios are rederived, on the basis of existing data, for binary galaxies, small
groups, clusters of galaxies, and the Virgo Supercluster. For each type of galaxy system, the average
M/L values come out to be a few solar units. These results eliminate the need to assume large
amounts of hidden mass in galaxy systems, if the modified dynamics applies.
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,G M for circular orbits (— rotation-supported galaxies)

Federico Lelli (INAF - Arcetri Astrophysical Observatory) Alternatives to Dark Matter



(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

Four predictions in one equation:

Star-dominated
spiral galaxies

1000 &
100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

Four predictions in one equation:

wnphenalt 8| (i) The relevant quantities are V_and M, - OK
1977 Original Tully-Fisher relation: L, vs HI linewidth

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)

1000 &
100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

Four predictions in one equation:

wnphenalt 8| (i) The relevant quantities are V_and M, - OK
‘ 1977 Original Tully-Fisher relation: L, vs HI linewidth

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)
(1) Slope should be exactly 4 — OK

1000 &
100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

Four predictions in one equation:

wnphenalt 8| (i) The relevant quantities are V_and M, - OK
; 1977 Original Tully-Fisher relation: L, vs HI linewidth

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)
(1) Slope should be exactly 4 — OK

(i11) Normalization 1s a,G — OK with other estimates

1000 &
100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

Four predictions in one equation:

wnphenalt 8| (i) The relevant quantities are V_and M, - OK
; 1977 Original Tully-Fisher relation: L, vs HI linewidth

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)
(1) Slope should be exactly 4 — OK

(i11) Normalization 1s a,G — OK with other estimates

W (iv) No dependence on other quantities — OK

100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

No BTFR dependence on surface brightness (surface

Star-dominated

TP <l density) 1s unexpected in a Newtonian+DM context:
2
| _ GM tot
R R’

1000 &
100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

No BTFR dependence on surface brightness (surface

Star-dominated

STapTes Al density) 1 unexpected in a Newtonian+DM context:
4 2 o r2
VZ_GMtot 4 —G Mo
— 2 4
R R’ R R

1000 &
100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

No BTFR dependence on surface brightness (surface

Star-dominated

VEEETRES | density) 1s unexpected in a Newtonian+DM context:
4 2 a2 2 A x2
V2 . G Mtot vV — G MtOt V4: G Mtot
R R’ R R 2%
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100
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

No BTFR dependence on surface brightness (surface

Star-dominated

VEEETRES | density) 1s unexpected in a Newtonian+DM context:
4 2 a2 2 A x2
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

No BTFR dependence on surface brightness (surface

Star-dominated

VEEETRES | density) 1s unexpected in a Newtonian+DM context:
4 2 a2 2 A x2
VZ_GMtot |4 :G MtOt V4:G Mtot
R R’ R R 2%
2 2
G"M,
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

Star-dominated

No BTFR dependence on surface brightness (surface

VEEETRES | density) 1s unexpected in a Newtonian+DM context:
2 2 2
V2 . GMtot V4: G MtOt V4: GZMtzot
R R’ R R 2%
G’ M, +_ G| M,
M, =f,'M Vi=s——> 4 M
o =Fo M, 12) R’ fi R’ b

1000 &
100
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Star-dominated

(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

No BTFR dependence on surface brightness (surface

VEEETRES | density) 1s unexpected in a Newtonian+DM context:
2 2 2
V2 . GMtot V4: G MtOt V4: GZMtzot
R R’ R R 2%
G’ M, +_ G| M,
M, =f,'M Vi=s——> 4 M
o =Fo M, 12) R’ fi R’ b

1000 &

100 Mb
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(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)

Star-dominated

No BTFR dependence on surface brightness (surface

VEEETRES | density) 1s unexpected in a Newtonian+DM context:
4 2 2 12 2 2 r2
VZ_GMtot |4 :G MtOt V4:G Mtot
R R? R® R R’
G’ M: «_G | M,
M, =f,"M, V= d Vi=—|—|M,
tot f12, Rz fb R
oo : . M, . G Qalaxy disks with
p= > \VA— > >, M, different 2, should
TR b follow different BTFRs

(but they don’t...)

Federico Lelli (INAF - Arcetri Astrophysical Observatory)
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,GM for circular orbits (— rotation-supported galaxies)

(2) 0,'=a,G M for quasi-isothermal systems (— pressure-supported galaxies)
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(2) 0,*=a,G M, for quasi-isothermal systems (pressure-supported gals)

Faber-Jackson (1976) relation for elliptical galaxies

Elliptical o .
HpHeass Three predictions in one equation:

0
=
2—*

10° 102 10% 10° 10° 10”7 10® 10% 10'%10% 10
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(2) 0,*=a,G M, for quasi-isothermal systems (pressure-supported gals)

Faber-Jackson (1976) relation for elliptical galaxies

Elliptical o .
HpHeass Three predictions in one equation:

(1) Slope should be exactly 4 — OK

0
=
2—*

10° 102 10% 10° 10° 10”7 10® 10% 10'%10% 10
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(2) 0,*=a,G M, for quasi-isothermal systems (pressure-supported gals)

Faber-Jackson (1976) relation for elliptical galaxies

Elliptical o .
HpHeass Three predictions in one equation:

(1) Slope should be exactly 4 — OK
(i1) Normalization is a,G — OK with BTFR estimate!

0
=
2—*

10° 102 10% 10° 10° 10”7 10® 10% 10'%10% 10
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(2) 0,*=a,G M, for quasi-isothermal systems (pressure-supported gals)

Faber-Jackson (1976) relation for elliptical galaxies

Elliptical o .
HpHeass Three predictions in one equation:

(1) Slope should be exactly 4 — OK

(i1) Normalization is a,G — OK with BTFR estimate!

(111) No dependence on other quantities IF a < a, — OK

0
=
2—*

10° 102 10% 10° 10° 10”7 10® 10% 10'%10% 10
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(2) 0,*=a,G M, for quasi-isothermal systems (pressure-supported gals)

Faber-Jackson (1976) relation for elliptical galaxies

Elliptical o .
HpHeass Three predictions in one equation:

(1) Slope should be exactly 4 — OK

(i1) Normalization is a,G — OK with BTFR estimate!

0
=
2—*

(111) No dependence on other quantities IF a < a, — OK
o, 1s measured at R<R_ (containing half luminosity):
For dwart spheroidals: a < a, at R<R, - MOND regime

For giant ellipticals: a > a,at R<R_ — Newtonian regime

10° 102 10% 10° 10° 10”7 10® 10% 10'%10% 10
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(2) 0,*=a,G M, for quasi-isothermal systems (pressure-supported gals)

Faber-Jackson (1976) relation for elliptical galaxies

Elliptical o .
HpHeass Three predictions in one equation:

(1) Slope should be exactly 4 — OK
(i1) Normalization is a,G — OK with BTFR estimate!

0
=
2—*

(111) No dependence on other quantities IF a < a, — OK
o, 1s measured at R<R_ (containing half luminosity):
For dwart spheroidals: a < a, at R<R, - MOND regime

For giant ellipticals: a > a,at R<R_ — Newtonian regime

2
Oy, GM M ~ 0 R Fundamental plane of ellipticals

—— N

R R2 ¢ (Djorgovski & Davis 1987; Dressler 1987)

10° 102 10% 10° 10° 10”7 10® 10% 10'%10% 10
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies) \/
(2) 0,*=a,G M, for quasi-isothermal systems (— pressure-supported galaxies) \/ ‘

(3) The mass-discrepancy (the DM effect) always occurs around a,
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(3) The mass discrepancy always occurs around a,

The mass discrepancy as a function of acceleration

10

Solar System

Yo Y oJBR°
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Earth's surface gravity
orbital periastron

surface gravity

< PSR B1913+16 binary pulsar

<4 GW150914 final orbit
merging black holes

1 You are here
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Problem tor MOND: Galaxy Clusters

Newtonian analysis: M, /M, ~4-10 MOND analysis: M,_/M, ~2
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Problem tor MOND: Galaxy Clusters

Newtonian analysis: M, /M, ~4-10 MOND analysis: M,_/M, ~2

vt. Dyn. Mass —14

<
~
|
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P
©
=
-
N
-
M
ol

Proposed solutions:
e Undetected baryons (Milgrom 2008) — BBN implies ~30% missing baryons
e Sterile neutrinos with m~10 eV (Angus 2008) — v oscillations and masses

 Extended MOND: a o« ® (Zhao & Famaey 2012) — deeper theory?
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies) \/
(2) 0,*=a,G M, for quasi-isothermal systems (— pressure-supported galaxies) \/ ‘

(3) The mass-discrepancy (the DM effect) always occurs around a, Odlghies Clusters

(4) Rotation curves can be predicted from the baryon distribution
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(4) Rotation curves can be predicted from the baryon distribution

We need to introduce an interpolation function w(x) with x = a/a,:

limu->1

X=>00

GM(X):QN
lim u->x

x=>0
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(4) Rotation curves can be predicted from the baryon distribution
We need to introduce an interpolation function w(x) with x = a/a,:

limu->1 a=¢gy Newtonian regime

X => 0

GM(X):QN .
lim u->x

x=>0
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(4) Rotation curves can be predicted from the baryon distribution

We need to introduce an interpolation function w(x) with x = a/a,:

limu->1 a=¢gy Newtonian regime
X => 0
GM(X):QN ] a2
lim u->x — =gy
x=0 ao
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(4) Rotation curves can be predicted from the baryon distribution

We need to introduce an interpolation function w(x) with x = a/a,:

limu->1 a=¢gy Newtonian regime
X => 0

GM(X):QN a2 .
lim u=>x —=(y a=\/a0gN MOND regime
x>0 d,
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(4) Rotation curves can be predicted from the baryon distribution

We need to introduce an interpolation function w(x) with x = a/a,:

limu->1 a=¢gy Newtonian regime
X => 0

GM(X):QN a2 .
lim u=>x —=(y a=\/a0gN MOND regime
x>0 d,

Interpolation functions are very common in Physics. Examples:

- Lorentz factor vy (via ¢): Newton’s second law < special relativity

- Planck’s Law for the blackbody radiation (via #): Rayleight-Jeans < Wein regimes

- Probability for quantum tunneling (via #): classic mechanics < quantum theory

MOND postulates do NOT specify u, only asymptotic limits. Which function to choose?
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(4) Rotation curves can be predicted from the baryon distribution

Radial Acceleration Relation
(McGaugh, Lelli, Schombert 2016)

2’700 points from
175 disk galaxies

-11 -10
log(g,) [m s?]
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(4) Rotation curves can be predicted from the baryon distribution

. . . e Fully empirical - independent of MOND
Radial Acceleration Relation Y p. o p. .
(McGaugh, Lelli, Schombert 2016) * Asymptotic limits consistent with MOND

» Baryon distribution (g, ) <> rot. curve (a)

» The RAR specifies the form of v and p

2’700 points from
175 disk galaxies

-11 -10
log(g,) [m s?]
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(4) Rotation curves can be predicted from the baryon distribution

 Fully empirical - independent of MOND

Radial Acceleration Relati Co : :
adial Accelerdlion Refation e Asymptotic limits consistent with MOND

(McGaugh, Lelli, Schombert 2016)
» Baryon distribution (g, ) <> rot. curve (a)

» The RAR specifies the form of v and p
_ o (9x -1
a_V<_)gN V=u

dy

We can now assume the RAR and predict
rotation curves given p,_(within the errors).

2’700 points from
175 disk galaxies

-11 -10
log(g,) [m s?]
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(4) Rotation curves can be predicted from the baryon distribution
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)
(2) 0,'=a,G M, for quasi-isothermal systems (— pressure-supported galaxies) v

(3) The mass-discrepancy (the DM effect) always occurs around a,, Gelafies Clusters

(4) Rotation curves can be predicted from the baryon distribution

(5) = a0 = f (Zb’O/ZM) 20 with 2 =a /271G tor rotating disks
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(5) 2 0 = S(Zb’O/ZM) 24 with 2 =a /25tG for thin rotating disks

81 Central Dynamical Surface Density:

1 =V’
Zdyn(O)ZZTEG OEdR

Newtonian formula from Toomre (1963).
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(5) 2 0 = S(Zb’O/ZM) 24 with 2 =a /25tG for thin rotating disks

81 Central Dynamical Surface Density:

1 =V
2, (0)= —dR
dyn( ) 2 T G 0 R2
Newtonian formula from Toomre (1963).
In a self-gravitating, flattened system,
Newton’s shell theorem does NOT apply:
the circular velocity (& dynamical density)

at R does depend on the mass outside R.
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(5) 2 0 = S(Zb’O/ZM) 24 with 2 =a /25tG for thin rotating disks

81 Central Dynamical Surface Density:

1 =V
2, (0)= —dR
dyn( ) 2 T G 0 R2
Newtonian formula from Toomre (1963).
In a self-gravitating, flattened system,
Newton’s shell theorem does NOT apply:
the circular velocity (& dynamical density)

at R does depend on the mass outside R.

In MOND, for R=0: 2, " =5(2 /2,) 2

Y Link '
S(}’):f V(X)dX .1n edw%ththeRAR
0 interpolation function!
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,G M, for circular orbits (— rotation-supported galaxies)
(2) 0,'=a,G M, for quasi-isothermal systems (— pressure-supported galaxies) v

(3) The mass-discrepancy (the DM effect) always occurs around a,, Gelafies Clusters

(4) Rotation curves can be predicted from the baryon distribution
(5) 2 a0 = f (2, /2,) 2, with 2 =a /271G tor rotating disks

(6) Disk stability 1s increased and does not dependent on mass discrepancy
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(6) Disk stability 1s increased and does not depend on mass discrepancy

In Newtonian dynamics, self-gravitating stel

lar disks are unstable:

— Ostriker & Peebles (1973): Bar instability develops and disk 1s destroyed

— Historical reason to introduce spherical DM hal
— DM halo stabilizes the disk: bars/spirals cannot

0s rather than DM disks
form when DM halo dominates

(d) T =0.94
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(6) Disk stability 1s increased and does not depend on mass discrepancy

In Newtonian dynamics, self-gravitating stellar disks are unstable:

— Ostriker & Peebles (1973): Bar instability develops and disk 1s destroyed

— Historical reason to introduce spherical DM halos rather than DM disks

— DM halo stabilizes the disk: bars/spirals cannot form when DM halo dominates

In MOND, selt-gravitating stellar disk are marginally stable:
In the Newtonian regime (a > a,): a~pRG=0ala~dplp

In the deep MOND regime (a < a,): a~VpRGa,=dala~1/28plp
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(6) Disk stability 1s increased and does not depend on mass discrepancy

In Newtonian dynamics, self-gravitating stellar disks are unstable:

— Ostriker & Peebles (1973): Bar instability develops and disk 1s destroyed

— Historical reason to introduce spherical DM halos rather than DM disks

— DM halo stabilizes the disk: bars/spirals cannot form when DM halo dominates

In MOND, selt-gravitating stellar disk are marginally stable:
In the Newtonian regime (a > a,): a~pRG=0ala~dplp

In the deep MOND regime (a < a,): a~VpRGa,=dala~1/28plp

— In the deep MOND limit, stability does NOT depend on the mass discrepancy.
— Bars and spiral arms can form 1n any galaxy under appropriate conditions.
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(6) Disk stability 1s increased and doesn’t depend on mass discrepancy

(a) LSB galaxy with spiral arms!

Large discrepancy:
DM halo dominates

" | but spiral arms form!
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,GM for circular orbits (— rotation-supported galaxies) *
(2) 0= a,G M, for quasi-isothermal systems (— pressure-supported galaxies)

(3) The mass-discrepancy (the DM effect) always occurs around a,, Gelafies Clusters

(4) Rotation curves can be predicted from the baryon distribution
(5) 2 a0 = f (2, /2,) 2, with 2 =a /271G tor rotating disks

(6) Disk stability 1s larger and does NOT dependent on the mass-discrepancy «,
(7) External field effect: strong equivalence principle 1s broken —

The external field in which a system 1s falling affects the internal dynamics
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(7) External field effect: strong equivalence principle is violated

 Weak Equivalence Principle (WEP)

Universality of free-fall: trajectory of an object in a gravitational field 1s
independent of its composition and structure (center-of-mass motion)
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(7) External field effect: strong equivalence principle is violated

 Weak Equivalence Principle (WEP)

Universality of free-fall: trajectory of an object in a gravitational field 1s
independent of its composition and structure (center-of-mass motion)

* Einstein Equivalence Principle (EEP)
WEP + Lorentz invariance (same laws under spacetime rotations)
+ Local Position Invariance (LPI) for non-gravitational experiments
(results of experiments do not depend on where/when they are performed)
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(7) External field effect: strong equivalence principle is violated

 Weak Equivalence Principle (WEP)

Universality of free-fall: trajectory of an object in a gravitational field 1s
independent of its composition and structure (center-of-mass motion)

* Einstein Equivalence Principle (EEP)
WEP + Lorentz invariance (same laws under spacetime rotations)
+ Local Position Invariance (LPI) for non-gravitational experiments
(results of experiments do not depend on where/when they are performed)

e Strong Equivalence Principle (SEP)

WEP + Lorentz invariance + LPI for gravitational experiments too

Federico Lelli (INAF - Arcetri Astrophysical Observatory) Alternatives to Dark Matter



(7) External field effect: strong equivalence principle is violated

MOND 1s non-linear — consider both internal and external accelerations

For non-1solated systems, three possibilities:
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(7) External field effect: strong equivalence principle is violated

MOND 1s non-linear — consider both internal and external accelerations

For non-1solated systems, three possibilities:
(D g, .. <& ., <K a,—MOND regime

Example: nearly 1solated galaxies
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(7) External field effect: strong equivalence principle is violated

MOND 1s non-linear — consider both internal and external accelerations

For non-1solated systems, three possibilities:
(D g, .. <& ., <K a,—MOND regime

Example: nearly 1solated galaxies

(2) 8\ i K Ay <K 8y o — Newtonian regime

Example: star clusters in the inner MW, low-acc experiments on the Earth
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(7) External field effect: strong equivalence principle is violated

MOND 1s non-linear — consider both internal and external accelerations

For non-1solated systems, three possibilities:
(D g, .. <& ., <K a,—MOND regime

Example: nearly 1solated galaxies

(2) 8\ i K Ay <K 8y o — Newtonian regime

Example: star clusters in the inner MW, low-acc experiments on the Earth

(3) 8 it K 8n o K @, = Newton with G ~ G a /g, .,

Example: some dwart satellites around the MW and Andromeda
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(7) External field effect: strong equivalence principle is violated

MOND i1s non-linear — consider bot

P

1 internal and external accelerations

For non-1solated systems, three possil

hilities:

(1) 85 o ¥ 8y it K @, — MOND regime

Example: nearly 1solated galaxies

(2) 8\ i K Ay <K 8y o, — Newtonian

regime

Example: star clusters in the inner MW, low-acc experiments on the Earth

(3) 8 it K 8n o K @, = Newton with G ~ G a /g, .,

Example: some dwart satellites around the MW and Andromeda

EFE 1s a general prediction but details depend on the specific MOND theory

Federico Lelli (INAF - Arcetri Astrophysical Observatory)
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(7) External field effect: strong equivalence principle is violated

_, e For truly isolated galaxies:
e=0
=== =003 _ a=v(g,. /a)g, . — flatouter RCs

==== e= —0.033

E——— » For galaxies subjected toe=g_/a :

_ , R .
Outer Rising RC a=v(g /2 €8 ,, — declining outer RCs

Gobs [MS™]

=)

(=Y )]
=
p—

)‘

I
&

12

2.4
-120 -11.5 -11.0 -10.5 -10.0 -95

x=10g10 gbar [ms™] Chae, Lelli, Desmond et al. 2020, ApJ
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(7) External field effect: strong equivalence principle is violated

e For truly isolated galaxies:

e=0

——— ¢=0.033 , aqa= V(gN int/a())gN . — flat outer RCs

==== e= —0.033

- e=—0.1

« For galaxies subjected toe=g_/a:

—2

a=v(g, . /a;e)g . — declining outer RCs

Outer Rising RC

* The RAR should be a family of curves
depending on the galaxy environment

* We can fit RCs to infer the value of e
and independently estimate e__ from the

large-scale environment of galaxies
12

2.4
-120 -11.5 -11.0 -10.5 -10.0 -95

x=10g10 gbar [ms™] Chae, Lelli, Desmond et al. 2020, ApJ
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(7) External field eflect: strong equivalence principle is violated

highest gen, cases

NG C5033: e = 010272858, ¢=0.1047303 ABIC = 839 0.052+0.011
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(7) External field effect: strong equivalence principle is violated

SPARC original mass models

Systematic

_ e=0 /. deviation in the
~== ¢=0.018

low acceleration
part of the RAR
— consistent
with EFE from
the average

<g > of the

A (Orthogonal Residual) [dex]

LLocal Universe
(X0, Yo) | (Chae, Lelli+2020)

2696 points
= = 16th & 84th percentiles

— 1 1 = 10 _9 ] e  median with bootstrap errors

X = 10glO Sbar [mS—Z]

=19 ~11 -10 —9 _8

Chae, Lelli+2020, ApJ] ~ *o [dex]
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General MOND predictions (most dating 1983-1984):

(1) V_*=a,GM for circular orbits (— rotation-supported galaxies) *
(2) 0= a,G M, for quasi-isothermal systems (— pressure-supported galaxies)

(3) The mass-discrepancy (the DM effect) always occurs around a,, Gelafies Clusters

(4) Rotation curves can be predicted from the baryon distribution
(5) 2 a0 = f (2, /2,) 2, with 2 =a /271G tor rotating disks

(6) Disk stability 1s increased and does not dependent on mass discrepancy

(7) External field effect: strong equivalence principle 1s broken —

The external field in which a system 1s falling affects the internal dynamics \e
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Roadmap of the Lecture
1. The general MOND paradigm

2. Non-relativistic MOND theories

3. Relativistic MOND theories
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How do we interpret the MOND phenomenology?

Intuitive/naive way: multiply heuristic MOND relation by m. = m, of a test particle

a

au (a_) m; = 571»\1 m,  Modified inertia? — modify F = mia (Newton’s 2™ law)
0
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How do we interpret the MOND phenomenology?

Intuitive/naive way: multiply heuristic MOND relation by m. = m, of a test particle
da

au (a_) m; = 571»\1 m,  Modified inertia? — modify F = mia (Newton’s 2™ law)
0

am.=v (g—) gym_ Modified gravity? — modify Newton’s Gravitational law
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How do we interpret the MOND phenomenology?

Intuitive/naive way: multiply heuristic MOND relation by m. = m, of a test particle

a

au (a_) m; = 571»\1 m,  Modified inertia? — modify F = mia (Newton’s 2™ law)
0

am=v (%) gym , Modified gravity? — modity Newton’s Gravitational law
0

BUT these equations cannot be generally valid. For m, & m, in the MOND regime:

F Gmm, 1
01:\/aogN: ao?: ao(x N )zm
1 1~ “\9D 1
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How do we interpret the MOND phenomenology?

Intuitive/naive way: multiply heuristic MOND relation by m. = m, of a test particle

a

au(—)m=gym,  Modified inertia? — modify F = ma (Newton's 2" law)
0

am=v (&) gym , Modified gravity? — modity Newton’s Gravitational law
dy
BUT these equations cannot be generally valid. For m, & m, in the MOND regime:

F Gmm, 1
01:\/aogN: dy— = ao(

>
m, X1_X2) m

a,=va,g _\/a —FN—\/a Gm,m, 1

»—Vldygn—1|dyg — 4| dy 5
m, (X1_X2) m,
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How do we interpret the MOND phenomenology?

Intuitive/naive way: multiply heuristic MOND relation by m. = m, of a test particle
da

au(—)m=gym,  Modified inertia? — modify F = ma (Newton's 2" law)
0

am=v (%) gym , Modified gravity? — modity Newton’s Gravitational law
0

BUT these equations cannot be generally valid. For m, & m, in the MOND regime:

F Gmym, 1 Thisis NOT symmetric in m and m.:
01:\/aogN: dy ao(

m, X,—x,)’ m; It'd generally violate the Principle of
Action & Reaction (Newton’s 3™ law)
Fy Gmm, 1 tum NOT d
a,=va,g,=1a,—*=4a, : — Linear momentum conserve
m, (Xl— X 2) M, (we do NOT want this to happen...)
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How do we interpret the MOND phenomenology?

The heuristic MOND law must emerge from a general theory in specific situations.

Vz
Py

Let’s consider the non-relativistic Newtonian Action:

S=[dtL=|dt(L + )= [ dtd’x

matter +
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How do we interpret the MOND phenomenology?

The heuristic MOND law must emerge from a general theory in specific situations.

Let’s consider the non-relativistic Newtonian Action:

S:fdtL:fdt(Lmatter'l' t ):fdtdSX pV?z )

Emmy Noether’s Theorem:

Symmetry in § <> conservation law
t — t+ At Time translations: Total Energy

x — x +Ax Space translations: Linear momentum

x — Rx  Space rotations: Angular momentum
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How do we interpret the MOND phenomenology?

The heuristic MOND law must emerge from a general theory in specific situations.

Vz
Py

Let’s consider the non-relativistic Newtonian Action:

S=[dtL=|dt(L + )= [ dtd’x

matter +

Principle of Least Action.

66_(“;:()—) qu):4n Gp Poisson’s equation
65_ > — N ’ 2ndL
6_}_()_)0__Vq) ewton’s aw
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How do we interpret the MOND phenomenology?

The heuristic MOND law must emerge from a general theory in specific situations.

Let’s consider the non-relativistic Newtonian Action:

2
S:fdtL:fdt(Lmatter+ + ):fdtd3x pV? )
Principle of Least Action. /
Change this for

modified inertia

66_(“;:()—) qu):4n Gp Poisson’s equation
65_ > — N ’ 2ndL
6_}_()_)0__Vq) ewton’s aw
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Three non-relativistic MOND theories:

(1) Modified Inertia (Milgrom 1994, 1999)
— 1nteresting but poorly developed: only a few general results
— no relativistic extension, but possible link with Mach’s Principle
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Three non-relativistic MOND theories:

(1) Modified Inertia (Milgrom 1994, 1999)
— 1nteresting but poorly developed: only a few general results
— no relativistic extension, but possible link with Mach’s Principle

(2) Non-linear Mod. Gravity: AQUAL (Bekenstein & Milgrom 1984)
— well developed but requires complex numerical calculations
— relativistic extension: TeVeS (Bekenstein 2004; Skordis & Zlosnik 2020)
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Three non-relativistic MOND theories:

(1) Modified Inertia (Milgrom 1994, 1999)
— 1nteresting but poorly developed: only a few general results
— no relativistic extension, but possible link with Mach’s Principle

(2) Non-linear Mod. Gravity: AQUAL (Bekenstein & Milgrom 1984)
— well developed but requires complex numerical calculations
— relativistic extension: TeVeS (Bekenstein 2004; Skordis & Zlosnik 2020)

(3) Quasi-linear Mod. Gravity: QUMOND (Milgrom 2010)
— well developed & allows for easier numerical calculations
— relativistic extension: BIMOND (Milgrom 2009, 2010)
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(1) MOND as Modified Inertia

]_ B v b A is a functional of the full trajectory x(7) with dimension of m/s>.
_ N

A[x(t);a
( ) 0 Fora>a,A—a= d’x/de* (Newton’s 2™ Law).
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(1) MOND as Modified Inertia

A is a functional of the full trajectory x(7) with dimension of m/s>.

A[}<t);a0]:_v(l)N 2 2 ’ nd
Fora>a, A — a = d°x/dr (Newton’s 2™ Law).

Something similar has already occurred in the history of Physics: Einstein’s Special Relativity

In Special Relativity, for a particle with rest-mass m moving along x with velocity v = dx/dr:
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(1) MOND as Modified Inertia

A is a functional of the full trajectory x(7) with dimension of m/s>.

A[}<t);a0]:_v(l)N 2 2 ’ nd
Fora>a, A — a = d°x/dr (Newton’s 2™ Law).

Something similar has already occurred in the history of Physics: Einstein’s Special Relativity

In Special Relativity, for a particle with rest-mass m moving along x with velocity v = dx/dr:

F
3 X — X
y(Z)a=—
y(<)a ! A[X(t);c]=F Qforizl,Z;c =F(v,a;c)
¢’V m dt'
F
Vg =22
Y(C)az_ m
Alternatives to Dark Matter
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(1) MOND as Modified Inertia

SN T A is a functional of the full trajectory x(7) with dimension of m/s>.
[X<t) a,|=—V @, . . And
Fora>a, A — a = d°x/dr (Newton’s 2™ Law).

A
In MOND no full theory yet setting A from varying S but two general results (Milgrom 1994):

(A) IF we impose the Newtonian and MOND limits at high and low accelerations +
Galilei Invariance — Eq. of motions are the same in all inertial frames: X (t )= X (t)+\7:)t
<15 dx .
Theory is time non-local: A[X(t),ao];éF(F;l:l, 2,..N)
t

Accelerations at (X, t) depend on the full orbital history!
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(1) MOND as Modified Inertia

SN T A is a functional of the full trajectory x(7) with dimension of m/s>.
[X<t) a,|=—V @, . . And
Fora>a, A — a = d°x/dr (Newton’s 2™ Law).

A
In MOND no full theory yet setting A from varying S but two general results (Milgrom 1994):

(A) IF we impose the Newtonian and MOND limits at high and low accelerations +
Galilei Invariance — Eq. of motions are the same in all inertial frames: X (t )= X (t)+\7:)t
<15 dx .
Theory is time non-local: A[X(t),a,]#F( e ;i=1,2,..N)
t

Accelerations at (X, t) depend on the full orbital history!

- a —_—
(B) For purely circular orbits: au (a— ) = g holds exactly (e.g. RAR for disk galaxies)
0

The interpolation function 1s a derived concept valid for circular orbits.
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Hints for building a modified inertia theory

Two remarkable numerical coincidences (Milgrom 1983a, Milgrom 1999):

H,-c
a,~ 20 H, = Hubble constant — maybe a (t) ~ H(t) 7?7
JU
2
c"VA/I3 | |
Uy~ \2/7 A = Cosmological constant — relation to Dark Energy???
JU

IF this numerology has some deeper, fundamental meaning:
either the state of the Universe at large enters in local dynamics,

or the same parameters enters both Cosmology (A) and local dynamics (a, ).
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(2) MOND as Non-Linear Modified Gravity

v: Vo
P T 8nG

n

S=|[dtL= dtd’x

875G

-V c1>\

ao

Lagrangian 1s quadratic in V@ —
standard Poisson’s equation

AQUAL (AQUAdratic Lagrangian)
Bekenstein & Milgrom (1984)
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(2) MOND as Non-Linear Modified Gravity
: Val

Lagrangian 1s quadratic in V@ —

3
5= f dt L= f dtd"x p P, 811G standard Poisson’s equation
‘V CI)‘ AQUAL (AQUAdratic Lagrangian)
- 8m G a’ Bekenstein & Milgrom (1984)
0
Principle of least Action: \/- w ‘V (D‘ Vo =4nG 0 Modified Poisson’s Equation
)
— 2

( \/;) _dF ( X ) - ‘V (I)‘ F 1s a free function (new degree of freedom) in L

"  dx B (13 that 1s linked to the interpolation function w or v.
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(2) MOND as Non-Linear Modified Gravity
V ol

dy

Vol=4rG 0 a=-v (&) _} in spherical symmetry only!
d

V- u

Federico Lelli (INAF - Arcetri Astrophysical Observatory) Alternatives to Dark Matter



(2) MOND as Non-Linear Modified Gravity
V ol

v O =4nGp LY (&> g, inspherical symmetry only!
d,

a,

V- u

Important observational implications:

If MOND 1s due to modified gravity, the RAR
of disk galaxies (which aren’t spherical) must be
an approximate relation with intrinsic scatter.

It MOND 1s due to modified inertia, the RAR
of disk galaxies holds exactly (circular orbits).

-11 -10
10g<gbar) [111 872]
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Application of AQUAL: The Antennae Merger

Observations Simulations

- Green = Stars

" Tiret & Combes (2008)
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(3) MOND as Quasi-Linear Modified Gravity
Vol

S = f dt L= f dt d° x p v Single gravitational potential ®
2 8nG
—1 AVAO Y CI)N—a(Z)Q M| Two potentials: @ and @ !
8nG a(Z)
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(3) MOND as Quasi-Linear Modified Gravity

p__\Vcb\
2 83nG

Single gravitational potential ®

S=|dtL= dtd’x

—1 —

8nG a;

Two potentials: @ and O !

Principle of least Action varying ©©, ® and x — set of 3 equations (Milgrom 2010)

Standard, linear Poisson’s equation for @

V2®:§-lv(‘v®N‘/ao)v®N

— Non-linear step: get ® from & v (J ;) = d QX(X)
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Application of QUMOND: Formation of Galaxy Disks

40 . : ’ 1 40 i , . 1 P °
8450 Myr 8450 Myr
I : l . Gas collapse — Exponential disk
20 [ il B 20 | Il B . .
- ey N e total surface mass density profile 10Gyr
%) -3 _\% 1) 4 -3 %
z 0 = WL = - Ltot
> BEN B e Wittenburg+2020 .
5 S 5 &
20 | . 20 | “ ZLstars
16 | 6 exp fit stars
| 7 & exp fit gas
-40 . ‘ . L] -8 -40 . ‘ ' L] -8
-40 -20 0] 20 40 -40 -20 0] 20 40
X kpc x kpc
40 , ‘ : 1 40 : ! y 1
8450 Myr 8450 Myr
0] I 0]
20 [ il B 20 | Il N
Ly -2 ma b -2 N&
[3) 4 -3 _\% ) 1-3 _\%
g o0 s g o =
> i -40&> > i -4023
5 £ | -5 &
(=8 W
20 | 6 20 | | 5
-7 -7
-40 L w L L1-8 -40 w L w L1-8
-40 -20 0] 20 40 -40 -20 0 20 40
X kpc x kpc
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Summary on non-relativistic MOND theories:

(1) Modified Inertia (Milgrom 1994, 1999)
— a =v(g,/a,)g, holds for circular orbits only (for any geometry)

— No calculations possible beyond circular orbits (so far)
(2) Non-linear Mod. Gravity: AQUAL (Bekenstein & Milgrom 1984)
— a =v(g,/a,)g, applies in spherical symmetry (for any orbit)

— Numerical simulations on binary galaxies — interactions & mergers

(3) Quasi-linear Mod. Gravity: QUMOND (Milgrom 2010)
— a = v(g,/a,)g, applies in spherical symmetry (for any orbit)

— Full hydrodynamical simulations of galaxy formation!
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Roadmap of the Lecture
1. The general MOND paradigm

2. Non-relativistic MOND theories

3. Relativistic MOND theories

Federico Lelli (INAF - Arcetri Astrophysical Observatory) Alternatives to Dark Matter



Lovelock-Grigore Theorem:
GR (+A) 1s the only theory that satisty these assumptions:

1- Geometry 1s Reimannian

2- The Action depends only on 2

3- It 1s diffeomorphism 1nvariant

4- Tt 18 local

5- It leads to 2" order field equations
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Many ways to build a relativistic version of MOND

Retain
Reimann

<

Abandon
Reimann

l

Finsler

Geometry
(Namoumi 15)
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Many ways to build a relativistic version of MOND

Retain Only the
Reimann metric
Abandon Add new
Reimann fields

: TeVeS

Finsler (Bekenstein 04)
Geometry BiMOND
(Namoumi 15) (Milgrom 09)
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Many ways to build a relativistic version of MOND

Retain Only the Retain
Reimann § metric § Invariance
Abandon Add new Break
Reimann fields Invariance

: TeVeS

Finsler (Bekenstetn 04) Horava
Geometry BiMOND Gravity
(Namoumi 15) (Milgrom 09) (Sanders 11)
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Many ways to build a relativistic version of MOND

Retain Only the Retain Retain
Reimann K metric K Invariance Locality
Abandon Add new Break Break
Reimann fields Invariance Locality

Finsler (B;I;;?ti?rlso 4 Horava Nonlocal
Geometry BiMOND Gravity \%(O1D.
(Namoumi 15) (Milgrom 09) (Sanders 11) (Deftayet+11)
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Many ways to build a relativistic version of MOND

Retain Only the Retain Retam __| F(R)
Reimann metric Invariance Locality Theories
Abandon Add new quak Break NO GO
Reimann fields Invariance Locality for MOND

Finsler (B;I;;?ti?rlso 4 Horava Nonlocal
Geometry BiMOND Gravity \%(O1D.
(Namoumi 15) (Milgrom 09) (Sanders 11) (Deftayet+11)
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Many ways to build a relativistic version of MOND

Retain Only the Retain Retam __| F(R)
Reimann metric Invariance Locality Theories
Abandon Add new quak Break NO GO
Reimann fields Invariance Locality for MOND

Finsler (Bieen?t/gnso 4 Horava Nonlocal Emergent
Geometry BiMOND Gravity MOND Gravity
(Namoumi 15) (Milgrom 09) (Sanders 11) (Deffayet+11) (Verlinde 17)
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Bekenstein’s TeVeS (Tensor-Vector-Scalar):
- — Elnstein’s metric
- Vector A" — to get the “right” gravitational lensing (Sanders 1997)

- — to get the DM effect for matter (Bekenstein & Milgrom 1984)
- Free Function — interpolation function (similar to AQUAL, QUMOND)
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Bekenstein’s TeVeS (Tensor-Vector-Scalar):
- — Elnstein’s metric
- Vector A" — to get the “right” gravitational lensing (Sanders 1997)

- — to get the DM effect for matter (Bekenstein & Milgrom 1984)
- Free Function — interpolation function (similar to AQUAL, QUMOND)

Matter follows a “physical metric” given by a distormal transtormation:

Juv= +A, A, —A A0 = —2A, A,
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Application: Bullet Cluster in Bekensteln S TeVeS
X-rays + Le&ng Maf)\f,

IS I RIS (O I oIS N EZ R VOR < i BER ' (Sl MOND model with 2eV v (Angus+2007):

in ACDM but natural in MOND. Red: Observed lensing convergence map
(Hayashi & White 2006; Farrar & Rosen 2006; Black: best-fit MOND+v convergence map
Angus+2007; Angus & McGaugh 2008) Blue: total surface densities (baryons+v).
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TeVeS is ruled out by kilonova discovery (GW170817)

ot quB &

GW170817 GW170817 NGO
DECam observation DECam observation 5
(0.5-1.5 days post merger) (>14 days post merger) 5
| |
- » =
B . :
N N | B

E J E J Lightcurve from INTEGRAL/SPI-ACS
(> 100 keV)

Gravitational Wave signal immediately
followed by gamma-ray signal:

300

—~
)

e
2
=i
=
3
3
)

=
L
=
<
-
©
=}
5]
>
=

200

Frequency (Hz)

_ 15
IcGW CEM|<10 Cont

ButTeVeS predicted ¢, # ¢, !

100
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New TeVeS-like theory (Skordis & Zlosnik 2020):

Combine scalar & vector in new time-like vector:
B'=e ** A" suchthat B°=¢g""B,B,=—e **
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New TeVeS-like theory (Skordis & Zlosnik 2020):

Combine scalar & vector in new time-like vector:
B'=e ** A" suchthat B°=¢g""B,B,=—e **

The Action has free terms that are fixed requiring 5 conditions:

(1) General Relativity when V@ > a 1n quasi-static situations

(2) MOND/AQUAL when VO < a 1n quasi-static situations

(3) Gravitational lensing without dark matter
(4) Tensor mode of GW propagates at the speed of light
(5) FLRW background with the same expansion history as LCDM
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New TeVeS-like theory (Skordis & Zlosnik 2020):

x10—10 600 1000

I 1

f(f—}—l)CET — ACDM _
o 4 ——— Cosh function: Kg = 0.5

---- Higgs-like: Kg = 0.2, wg = 10717
Exp function: K = 0.1

- P(k)[(hMpc)?

M |

Fcl:[(hﬂrf;;c) ll ] |

1 |
1000 1400

Federico Lelli (INAF - Arcetri Astrophysical Observatory)

CMB power spectrum
(both temperature and
polarization) and

matter power spectrum
P(k) similar to LCDM.

Gravitational lensing
and c_,=c_ are fine.

Lots of work left to do:
non-linear formation of
LSS, galaxy
formation...
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Success of MOND at different scales

Small Scales (~1-100 kpc) Intermediate Scales (~1 5 Mpco) Large Scales (>100 Mpc)
Rotatlon Supported Galaxres Galaxy Groups ‘w

.,;=.f Andromeda " '1
Drspersron Supported Galax1es Galaxy Clusters: » f P e ». Large Scale Structure
(ellipticals & dwarf spheroidals) o i TG -+,. E " ' (2dF, SDSS)
: o s : . . °. : i
. ryons:« S
; utrinos? -
. Deéper/bet;ter theory”
- \ i 4 ."‘ - \-\-'. : : 4° slice
g 'Y . ‘ : .. ‘A : .' : ; ’ o 82821 galaxies

Messier 87 |9 . T8 BT -7 abendogy
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