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CMB radiation
(COBE, WMAP, Planck)

(2dF, SDSS)
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This is not direct evidence for particle dark matter!

Current Gravitational Laws (Einstein & Newton) +
Standard Model of Particle Physics = Do NOT work

CMB radiation
(COBE, WMAP, Planck)

Need of Dark Matter at Different Scales
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Probing Gravity at All Scales
For particles orbiting a point mass M:

ξ(M )=√
48 c4

G2 M2 ε
3

In a log-log plot, this is a line 
with fixed slope of 3 and 
normalization given by M.

(Exercise 1: derive this Eq. given ξ and ε)

Baker+2015
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Probing Gravity at All Scales
For particles orbiting a point mass M:

ξ(M )=√
48 c4

G2 M2 ε
3

In a log-log plot, this is a line 
with fixed slope of 3 and 
normalization given by M.

Dark Matter and Dark Energy arise 
at low curvatures (weak Gravity).

General Relativity has been well tested 
at high curvatures (strong Gravity).

(Exercise 1: derive this Eq. given ξ and ε)

Baker+2015
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GM
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GM
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Probing Gravity at All Scales
For particles orbiting a point mass M:

ξ(M )=√
48 c4

G2 M2 ε
3

In a log-log plot, this is a line 
with fixed slope of 3 and 
normalization given by M.

DM appears below a characteristic 
acceleration a

0 = GM/r2 ~ 10-10 m s-2

ξ(a0)=
√48 a0

2

c4 ε
−1

(Exercise 1: derive this Eq. given ξ and ε)

(Exercise 2: derive this Eq. given a
0
)

Baker+2015



  

Many versions of 
Modified Gravity to 
explain DM or DE

(each one with its own 
serious problems). 

This lecture will NOT 
cover all this.

I will focus on 
Milgromian Dynamics 

(aka MOND). 
Empirically motivated 
paradigm with no DM.
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Roadmap of the Lecture

1. The general MOND paradigm

2. Non-relativistic MOND theories

3. Relativistic MOND theories
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MOND = Modified Newtonian Dynamics

or MilgrOmiaN Dynamics
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Proposed by Moderhai Milgrom (1983a, b, c)
● MOND is a general paradigm that includes several theories

(at both the non-relativistic and relativistic level)
● Key distinguishing general predictions of the general MOND 

paradigm from specific predictions of specific MOND theories 



General MOND postulates (at the non-relativistic level)
1) New constant of Physics: a

0 
(~10-10 m/s2)

    similar role as c in Relativity and h in Quantum Mechanics
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General MOND postulates (at the non-relativistic level)
1) New constant of Physics: a

0 
(~10-10 m/s2)

    similar role as c in Relativity and h in Quantum Mechanics

2) For a » a
0
 → 

 
a = g

N
 (correspondence principle as in Quantum Mechanics)

kinetic (observed) acceleration of a particle

   Newtonian gravitational field (from the Poisson’s equation)

a⃗=
d2 x⃗

dt2
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g⃗N=−∇⃗ ϕN
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Circular orbit at large R
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Flat rotation curve!
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General MOND postulates (at the non-relativistic level)
1) New constant of Physics: a

0 
(~10-10 m/s2)

    similar role as c in Relativity and h in Quantum Mechanics

2) For a » a
0
 → 

 
a = g

N
 (correspondence principle as in Quantum Mechanics)

kinetic (observed) acceleration of a particle
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3) For a « a
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→

 
scale invariance (Milgrom 2009):

a=√gN a0
V 2

R
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Flat rotation curve!
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Baryonic Tully-Fisher RelationCircular orbit at large R

( x⃗ , t )→(λ x⃗ ,λ t )

a⃗=
d2 x⃗

dt2

g⃗N=−∇⃗ ϕN



Intuitive Cartoon: Scale Invariance = Flat Rotation Curves
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T = orbital time

V=2π
R
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Intuitive Cartoon: Scale Invariance = Flat Rotation Curves
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Trilogy of 
papers in 1983 
on ApJ, 270
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General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)
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Four predictions in one equation:
Star-dominated 
spiral galaxies

Gas-dominated 
dwarf irregulars
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Four predictions in one equation:

(i)
 
The relevant quantities are V

∞ 
and M

b
 → OK

1977: Original Tully-Fisher relation: L
B
 vs HI linewidth 

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)

Star-dominated 
spiral galaxies

Gas-dominated 
dwarf irregulars



(1) V
∞

4 = a
0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

Federico Lelli (INAF - Arcetri Astrophysical Observatory)                                     Alternatives to Dark Matter

Four predictions in one equation:

(i)
 
The relevant quantities are V

∞ 
and M

b
 → OK

1977: Original Tully-Fisher relation: L
B
 vs HI linewidth 

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)

(ii) Slope should be exactly 4 → OK

Star-dominated 
spiral galaxies

Gas-dominated 
dwarf irregulars



(1) V
∞

4 = a
0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

Federico Lelli (INAF - Arcetri Astrophysical Observatory)                                     Alternatives to Dark Matter

Four predictions in one equation:

(i)
 
The relevant quantities are V

∞ 
and M

b
 → OK

1977: Original Tully-Fisher relation: L
B
 vs HI linewidth 

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)

(ii) Slope should be exactly 4 → OK

(iii) Normalization is a
0
G → OK with other estimates

Star-dominated 
spiral galaxies

Gas-dominated 
dwarf irregulars



(1) V
∞

4 = a
0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

Federico Lelli (INAF - Arcetri Astrophysical Observatory)                                     Alternatives to Dark Matter

Four predictions in one equation:

(i)
 
The relevant quantities are V

∞ 
and M

b
 → OK

1977: Original Tully-Fisher relation: L
B
 vs HI linewidth 

2000s: Baryonic TF relation (McGaugh+2000, Verheijen 2001)

(ii) Slope should be exactly 4 → OK

(iii) Normalization is a
0
G → OK with other estimates

(iv) No dependence on other quantities → OK

Star-dominated 
spiral galaxies

Gas-dominated 
dwarf irregulars



(1) V
∞

4 = a
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G M

b 
for circular orbits (→ rotation-supported galaxies)
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No BTFR dependence on surface brightness (surface 
density) is unexpected in a Newtonian+DM context:

V 2

R
=

GM tot

R2

Star-dominated 
spiral galaxies

Gas-dominated 
dwarf irregulars
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No BTFR dependence on surface brightness (surface 
density) is unexpected in a Newtonian+DM context:
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=
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=
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Galaxy disks with 
different  Σ

b 
should 

follow different BTFRs 
(but they don’t...)



General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (→ pressure-supported galaxies)
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(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (pressure-supported gals)
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Faber-Jackson (1976) relation for elliptical galaxies

Three predictions in one equation:Ellipticals

Dwarf 
Spheroidals
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(i) Slope should be exactly 4 → OK
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Three predictions in one equation:

(i) Slope should be exactly 4 → OK

(ii) Normalization is a
0
G → OK with BTFR estimate!
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Faber-Jackson (1976) relation for elliptical galaxies

Three predictions in one equation:

(i) Slope should be exactly 4 → OK

(ii) Normalization is a
0
G → OK with BTFR estimate!

(iii) No dependence on other quantities IF a ≪ a
0
 → OK

Ellipticals

Dwarf 
Spheroidals
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Faber-Jackson (1976) relation for elliptical galaxies

Three predictions in one equation:

(i) Slope should be exactly 4 → OK

(ii) Normalization is a
0
G → OK with BTFR estimate!

(iii) No dependence on other quantities IF a ≪ a
0
 → OK

Ellipticals

Dwarf 
Spheroidals

σ
V 

is measured at R<R
e
 (containing half luminosity):

For dwarf spheroidals: a ≪ a
0
 at R<R

e 
→

 
MOND regime

For giant ellipticals:
 
a ≫ a

0 
at R<R

e 
→

 
Newtonian regime
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Faber-Jackson (1976) relation for elliptical galaxies

Three predictions in one equation:

(i) Slope should be exactly 4 → OK

(ii) Normalization is a
0
G → OK with BTFR estimate!

(iii) No dependence on other quantities IF a ≪ a
0
 → OK

σV
2

R
∼

G M

R2

Ellipticals

Dwarf 
Spheroidals

σ
V 

is measured at R<R
e
 (containing half luminosity):

For dwarf spheroidals: a ≪ a
0
 at R<R

e 
→

 
MOND regime

For giant ellipticals:
 
a ≫ a

0 
at R<R

e 
→

 
Newtonian regime

M∼σV
2 Re

Fundamental plane of ellipticals
(Djorgovski & Davis 1987; Dressler 1987)



General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (→ pressure-supported galaxies)

(3)
 
The mass-discrepancy (the DM effect) always occurs around a

0
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(3) The mass discrepancy always occurs around a
0

Courtesy of Stacy McGaugh



Newtonian analysis: M
dyn

/M
bar

~4-10 MOND analysis: M
dyn

/M
bar

~2

Sanders (1999)

Problem for MOND: Galaxy Clusters
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MOND analysis: M
dyn

/M
bar

~2

Sanders (1999)

Problem for MOND: Galaxy Clusters
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Proposed solutions:
● Undetected baryons (Milgrom 2008) → BBN implies ~30% missing baryons
● Sterile neutrinos with m~10 eV (Angus 2008) → υ oscillations and masses 
● Extended MOND: a

0 
∝ Φ (Zhao & Famaey 2012) → deeper theory?

Newtonian analysis: M
dyn

/M
bar

~4-10



General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (→ pressure-supported galaxies)

(3)
 
The mass-discrepancy (the DM effect) always occurs around a

0

(4) Rotation curves can be predicted from the baryon distribution
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Galaxies Clusters
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(4) Rotation curves can be predicted from the baryon distribution

We need to introduce an interpolation function μ(x) with x = a/a
0
:

aμ(x)=gN

lim
x→∞
μ→1

lim
x→0
μ→x
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(4) Rotation curves can be predicted from the baryon distribution

We need to introduce an interpolation function μ(x) with x = a/a
0
:

aμ(x)=gN

lim
x→∞
μ→1

lim
x→0
μ→x

a=gN

a2

a0

=gN a=√a0 gN

Newtonian regime

MOND regime

MOND postulates do NOT specify μ, only asymptotic limits. Which function to choose?

Interpolation functions are very common in Physics. Examples:

- Lorentz factor γ (via c): Newton’s second law ↔ special relativity

- Planck’s Law for the blackbody radiation (via h): Rayleight-Jeans ↔ Wein regimes

- Probability for quantum tunneling (via h): classic mechanics ↔ quantum theory
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(4) Rotation curves can be predicted from the baryon distribution
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2700 points from
175 disk galaxies

Radial Acceleration Relation
(McGaugh, Lelli, Schombert 2016)
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2700 points from
175 disk galaxies

Radial Acceleration Relation
(McGaugh, Lelli, Schombert 2016)

● Fully empirical - independent of MOND
● Asymptotic limits consistent with MOND
● Baryon distribution (g

N
) ↔ rot. curve (a)

● The RAR specifies the form of υ and μ



Federico Lelli (INAF - Arcetri Astrophysical Observatory)                                     Alternatives to Dark Matter

(4) Rotation curves can be predicted from the baryon distribution

log(g
N
) [m s-2]log(g
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) [m s-2]

lo
g(

a )
 [

m
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-2
]

d2 x

dt 2
=

V 2

R

∇
2
ΦN=4πGρb

gN=−∇ΦN

2700 points from
175 disk galaxies

Radial Acceleration Relation
(McGaugh, Lelli, Schombert 2016)

● Fully empirical - independent of MOND
● Asymptotic limits consistent with MOND
● Baryon distribution (g

N
) ↔ rot. curve (a)

● The RAR specifies the form of υ and μ

We can now assume the RAR and predict 

rotation curves given ρ
b 
(within the errors).

a=ν(
gN

a0

)gN ν=μ
−1
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(4) Rotation curves can be predicted from the baryon distribution



General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (→ pressure-supported galaxies)

(3)
 
The mass-discrepancy (the DM effect) always occurs around a

0

(4) Rotation curves can be predicted from the baryon distribution

(5) Σ
dyn, 0

 = f(Σ
b,0

/Σ
M

) Σ
b,0

 with Σ
M 

=
 
a

0
/2πG for rotating disks
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(5) Σdyn, 0
 = S(Σ

b,0
/Σ

M
) Σ

b,0
 with Σ

M 
=

 
a

0
/2πG for thin rotating disks

Central Dynamical Surface Density:

Σdyn(0)=
1

2πG∫0

∞ V 2

R2 dR

Newtonian formula from Toomre (1963).

 

Lelli et al. 2016
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(5) Σdyn, 0
 = S(Σ

b,0
/Σ

M
) Σ

b,0
 with Σ

M 
=

 
a

0
/2πG for thin rotating disks

Central Dynamical Surface Density:

Σdyn(0)=
1

2πG∫0

∞ V 2

R2 dR

Newtonian formula from Toomre (1963).
In a self-gravitating, flattened system, 
Newton’s shell theorem does NOT apply: 
the circular velocity (& dynamical density) 
at R does depend on the mass outside R.

 
Lelli et al. 2016
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(5) Σdyn, 0
 = S(Σ

b,0
/Σ

M
) Σ

b,0
 with Σ

M 
=

 
a

0
/2πG for thin rotating disks

Central Dynamical Surface Density:

Σdyn(0)=
1

2πG∫0

∞ V 2

R2 dR

Newtonian formula from Toomre (1963).
In a self-gravitating, flattened system, 
Newton’s shell theorem does NOT apply: 
the circular velocity (& dynamical density) 
at R does depend on the mass outside R.

In MOND, for R→0: Σdyn, 0
= S(Σ

b,0
/Σ

M
) Σ

b,0
 

S ( y)=∫0

y
ν(x)dx Linked with the RAR 

interpolation function!

Lelli et al. 2016



General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (→ pressure-supported galaxies)

(3)
 
The mass-discrepancy (the DM effect) always occurs around a

0

(4) Rotation curves can be predicted from the baryon distribution

(5) Σ
dyn, 0

 = f(Σ
b,0

/Σ
M

) Σ
b,0

 with Σ
M 

=
 
a

0
/2πG for rotating disks

(6) Disk stability is increased and does not dependent on mass discrepancy
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(6) Disk stability is increased and does not depend on mass discrepancy

In Newtonian dynamics, self-gravitating stellar disks are unstable:
→ Ostriker & Peebles (1973): Bar instability develops and disk is destroyed
→ Historical reason to introduce spherical DM halos rather than DM disks
→ DM halo stabilizes the disk: bars/spirals cannot form when DM halo dominates
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In Newtonian dynamics, self-gravitating stellar disks are unstable:
→ Ostriker & Peebles (1973): Bar instability develops and disk is destroyed
→ Historical reason to introduce spherical DM halos rather than DM disks
→ DM halo stabilizes the disk: bars/spirals cannot form when DM halo dominates

In MOND, self-gravitating stellar disk are marginally stable:
a∼ρRG⇒δa /a∼δρ/ρIn the Newtonian regime (a ≫ a

0
):

a∼√ρRGa0⇒δa /a∼1/2δρ/ρIn the deep MOND regime (a ≪ a
0
):

(6) Disk stability is increased and does not depend on mass discrepancy
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In Newtonian dynamics, self-gravitating stellar disks are unstable:
→ Ostriker & Peebles (1973): Bar instability develops and disk is destroyed
→ Historical reason to introduce spherical DM halos rather than DM disks
→ DM halo stabilizes the disk: bars/spirals cannot form when DM halo dominates

In MOND, self-gravitating stellar disk are marginally stable:

→ In the deep MOND limit, stability does NOT depend on the mass discrepancy.
→ Bars and spiral arms can form in any galaxy under appropriate conditions.

a∼ρRG⇒δa /a∼δρ/ρIn the Newtonian regime (a ≫ a
0
):

a∼√ρRGa0⇒δa /a∼1/2δρ/ρIn the deep MOND regime (a ≪ a
0
):

(6) Disk stability is increased and does not depend on mass discrepancy
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(6) Disk stability is increased and doesn’t depend on mass discrepancy

LSB galaxy with spiral arms!

Large discrepancy: 
DM halo dominates
but spiral arms form!



General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (→ pressure-supported galaxies)

(3)
 
The mass-discrepancy (the DM effect) always occurs around a

0

(4) Rotation curves can be predicted from the baryon distribution

(5) Σ
dyn, 0

 = f(Σ
b,0

/Σ
M

) Σ
b,0

 with Σ
M 

=
 
a

0
/2πG for rotating disks

(6) Disk stability is larger and does NOT dependent on the mass-discrepancy

(7) External field effect: strong equivalence principle is broken → 

    The external field in which a system is falling affects the internal dynamics
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(7) External field effect: strong equivalence principle is violated

●  Weak Equivalence Principle (WEP) 
 Universality of free-fall: trajectory of an object in a gravitational field is  
 independent of its composition and structure (center-of-mass motion)
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(7) External field effect: strong equivalence principle is violated

●  Weak Equivalence Principle (WEP) 
 Universality of free-fall: trajectory of an object in a gravitational field is  
 independent of its composition and structure (center-of-mass motion)

●  Einstein Equivalence Principle (EEP) 
 WEP + Lorentz invariance (same laws under spacetime rotations)

   + Local Position Invariance (LPI) for non-gravitational experiments
   (results of experiments do not depend on where/when they are performed)
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(7) External field effect: strong equivalence principle is violated

●  Weak Equivalence Principle (WEP) 
 Universality of free-fall: trajectory of an object in a gravitational field is  
 independent of its composition and structure (center-of-mass motion)

●  Einstein Equivalence Principle (EEP) 
 WEP + Lorentz invariance (same laws under spacetime rotations)

   + Local Position Invariance (LPI) for non-gravitational experiments
   (results of experiments do not depend on where/when they are performed)

●  Strong Equivalence Principle (SEP) 
 WEP + Lorentz invariance + LPI for gravitational experiments too
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(7) External field effect: strong equivalence principle is violated

MOND is non-linear → consider both internal and external accelerations

For
 
non-isolated systems, three possibilities:
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(7) External field effect: strong equivalence principle is violated

MOND is non-linear → consider both internal and external accelerations

For
 
non-isolated systems, three possibilities:

(1) g
N, ext  

≪ g
N, int 

≪ a
0 
→

 
MOND regime 

Example: nearly isolated galaxies
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MOND is non-linear → consider both internal and external accelerations

For
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MOND regime 

Example: nearly isolated galaxies

(2) g
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≪ a
0 
≪ g

N, ext 
 → Newtonian regime 

Example: star clusters in the inner MW, low-acc experiments on the Earth
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(7) External field effect: strong equivalence principle is violated

MOND is non-linear → consider both internal and external accelerations

For
 
non-isolated systems, three possibilities:

(1) g
N, ext  

≪ g
N, int 

≪ a
0 
→

 
MOND regime 

Example: nearly isolated galaxies

(2) g
N, int 

≪ a
0 
≪ g

N, ext 
 → Newtonian regime 

Example: star clusters in the inner MW, low-acc experiments on the Earth

(3) g
N, int  

≪ g
N, ext 

≪ a
0
 → Newton with G

eff
 ~ G a

0
/g

N, ext 

Example: some dwarf satellites around the MW and Andromeda



Federico Lelli (INAF - Arcetri Astrophysical Observatory)                                     Alternatives to Dark Matter

(7) External field effect: strong equivalence principle is violated

MOND is non-linear → consider both internal and external accelerations

For
 
non-isolated systems, three possibilities:

(1) g
N, ext  

≪ g
N, int 

≪ a
0 
→

 
MOND regime 

Example: nearly isolated galaxies

(2) g
N, int 

≪ a
0 
≪ g

N, ext 
 → Newtonian regime 

Example: star clusters in the inner MW, low-acc experiments on the Earth

(3) g
N, int  

≪ g
N, ext 

≪ a
0
 → Newton with G

eff
 ~ G a

0
/g

N, ext 

Example: some dwarf satellites around the MW and Andromeda

EFE is a general prediction but details depend on the specific MOND theory



● For truly isolated galaxies:

a = ν(g
N,int

/a
0
)g

N,int  
→ flat outer RCs

 

● For galaxies subjected to e = g
ext

/a
0
:

a = ν(g
N, int

/a
0
;
 
e)g

N, int  
→ declining outer RCs
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Outer Declining RC

Outer Rising RC

Chae, Lelli, Desmond et al. 2020, ApJ

(7) External field effect: strong equivalence principle is violated



● For truly isolated galaxies:

a = ν(g
N,int

/a
0
)g

N,int  
→ flat outer RCs

 

● For galaxies subjected to e = g
ext

/a
0
:

a = ν(g
N, int

/a
0
;
 
e)g

N, int  
→ declining outer RCs

● The RAR should be a family of curves 
depending on the galaxy environment

● We can fit RCs to infer the value of e
   and independently estimate e

env
 from the 

   large-scale environment of galaxies
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Outer Declining RC

Outer Rising RC

Chae, Lelli, Desmond et al. 2020, ApJ

(7) External field effect: strong equivalence principle is violated
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Chae, Lelli+2020, ApJ

(7) External field effect: strong equivalence principle is violated

Systematic 
deviation in the 
low acceleration 
part of the RAR 
→ consistent 
with EFE from 
the average 

<g
ext

> of the 

Local Universe 
(Chae, Lelli+2020)



General MOND predictions (most dating 1983-1984):
(1) V

∞
4 = a

0 
G M

b 
for circular orbits (→ rotation-supported galaxies)

(2) σ
V

4 = a
0 
G M

b 
for quasi-isothermal systems (→ pressure-supported galaxies)

(3)
 
The mass-discrepancy (the DM effect) always occurs around a

0

(4) Rotation curves can be predicted from the baryon distribution

(5) Σ
dyn, 0

 = f(Σ
b,0

/Σ
M

) Σ
b,0

 with Σ
M 

=
 
a

0
/2πG for rotating disks

(6) Disk stability is increased and does not dependent on mass discrepancy

(7) External field effect: strong equivalence principle is broken → 

    The external field in which a system is falling affects the internal dynamics
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Galaxies Clusters

?



  

Roadmap of the Lecture

1. The general MOND paradigm

2. Non-relativistic MOND theories

3. Relativistic MOND theories
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How do we interpret the MOND phenomenology?

a⃗μ(
a
a0

)mi= g⃗N mg

Intuitive/naive way: multiply heuristic MOND relation by m
i
 = m

g 
of a test particle

Modified inertia? → modify F = m
i
a (Newton’s 2nd law)
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How do we interpret the MOND phenomenology?

a⃗μ(
a
a0

)mi= g⃗N mg Modified inertia? → modify F = m
i
a (Newton’s 2nd law)

a⃗mi=ν(
gN

a0

) g⃗Nmg Modified gravity? → modify Newton’s Gravitational law

Intuitive/naive way: multiply heuristic MOND relation by m
i
 = m

g 
of a test particle

BUT these equations cannot be generally valid. For m
1 
& m

2
 in the MOND regime:

a1=√a0 gN=√a0

FN

m1
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Gm1m2

(x1−x2)
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1
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How do we interpret the MOND phenomenology?

a⃗μ(
a
a0

)mi= g⃗N mg Modified inertia? → modify F = m
i
a (Newton’s 2nd law)

a⃗mi=ν(
gN
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) g⃗Nmg Modified gravity? → modify Newton’s Gravitational law
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How do we interpret the MOND phenomenology?

a⃗μ(
a
a0

)mi= g⃗N mg Modified inertia? → modify F = m
i
a (Newton’s 2nd law)

a⃗mi=ν(
gN

a0

) g⃗Nmg Modified gravity? → modify Newton’s Gravitational law

Intuitive/naive way: multiply heuristic MOND relation by m
i
 = m

g 
of a test particle

BUT these equations cannot be generally valid. For m
1 
& m

2
 in the MOND regime:

a1=√a0 gN=√a0

FN

m1

=√a0

Gm1m2

(x1−x2)
2

1
m1

a2=√a0 gN=√a0

FN

m2

=√a0

Gm1m2

(x1−x2)
2

1
m2

This is NOT symmetric in m
1
 and m

2
: 

It’d generally violate the Principle of 

Action & Reaction (Newton’s 3rd law) 
→ Linear momentum NOT conserved
(we do NOT want this to happen...)
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How do we interpret the MOND phenomenology?
The heuristic MOND law must emerge from a general theory in specific situations.

Let’s consider the non-relativistic Newtonian Action:

S=∫dt L=∫dt (Lmatter+Lgravity+Lcoupling)=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ )
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How do we interpret the MOND phenomenology?
The heuristic MOND law must emerge from a general theory in specific situations.

Let’s consider the non-relativistic Newtonian Action:

Emmy Noether’s Theorem: 

Symmetry in S ↔ conservation law

t → t + Δt   Time translations: Total Energy

x → x +Δx  Space translations: Linear momentum

x → Rx       Space rotations: Angular momentum

S=∫dt L=∫dt (Lmatter+Lgravity+Lcoupling)=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ )
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How do we interpret the MOND phenomenology?

δ S
δΦ
=0→∇2

Φ=4πGρ

The heuristic MOND law must emerge from a general theory in specific situations.

Let’s consider the non-relativistic Newtonian Action:

δ S
δ x⃗
=0→ a⃗=−∇⃗ Φ

Principle of Least Action.
(Ex. 4: derive the Eq. of motion):

Poisson’s equation

Newton’s 2nd Law

S=∫dt L=∫dt (Lmatter+Lgravity+Lcoupling)=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ )
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How do we interpret the MOND phenomenology?
The heuristic MOND law must emerge from a general theory in specific situations.

Let’s consider the non-relativistic Newtonian Action:

Change this for 
modified inertia

Change this for 
modified gravity

Changing this 
modify both

S=∫dt L=∫dt (Lmatter+Lgravity+Lcoupling)=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ )

Principle of Least Action.
(Ex. 4: derive the Eq. of motion):

δ S
δΦ
=0→∇2

Φ=4πGρ

δ S
δ x⃗
=0→ a⃗=−∇⃗ Φ

Poisson’s equation

Newton’s 2nd Law
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Three non-relativistic MOND theories:
(1) Modified Inertia (Milgrom 1994, 1999)

→ interesting but poorly developed: only a few general results
→ no relativistic extension, but possible link with Mach’s Principle
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Three non-relativistic MOND theories:
(1) Modified Inertia (Milgrom 1994, 1999)

→ interesting but poorly developed: only a few general results
→ no relativistic extension, but possible link with Mach’s Principle

(2) Non-linear Mod. Gravity: AQUAL (Bekenstein & Milgrom 1984) 
→ well developed but requires complex numerical calculations
→ relativistic extension: TeVeS (Bekenstein 2004; Skordis & Zlosnik 2020)
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Three non-relativistic MOND theories:
(1) Modified Inertia (Milgrom 1994, 1999)

→ interesting but poorly developed: only a few general results
→ no relativistic extension, but possible link with Mach’s Principle

(2) Non-linear Mod. Gravity: AQUAL (Bekenstein & Milgrom 1984) 
→ well developed but requires complex numerical calculations
→ relativistic extension: TeVeS (Bekenstein 2004; Skordis & Zlosnik 2020)

(3) Quasi-linear Mod. Gravity: QUMOND (Milgrom 2010)

→ well developed & allows for easier numerical calculations
→ relativistic extension: BiMOND (Milgrom 2009, 2010)
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A⃗ [ x⃗(t ); a0]=−∇⃗ ΦN
A is a functional of the full trajectory x(t) with dimension of m/s2. 

For a ≫ a0, A → a = d2x/dt2 (Newton’s 2nd Law).

(1) MOND as Modified Inertia
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A⃗ [ x⃗(t ); a0]=−∇⃗ ΦN

(1) MOND as Modified Inertia

Something similar has already occurred in the history of Physics: Einstein’s Special Relativity

In Special Relativity, for a particle with rest-mass m moving along x with velocity v = dx/dt: 

A is a functional of the full trajectory x(t) with dimension of m/s2. 

For a ≫ a0, A → a = d2x/dt2 (Newton’s 2nd Law).



Federico Lelli (INAF - Arcetri Astrophysical Observatory)                                     Alternatives to Dark Matter

A⃗ [ x⃗(t ); a0]=−∇⃗ ΦN

(1) MOND as Modified Inertia

γ
3
(
v
c
)ax=

F x

m

Something similar has already occurred in the history of Physics: Einstein’s Special Relativity

In Special Relativity, for a particle with rest-mass m moving along x with velocity v = dx/dt: 

A⃗ [ x⃗(t ); c ]=F ( d
i x⃗

dt i
for i=1 ,2; c )=F (v , a ;c)γ(

v
c
)a y=

F y

m

γ(
v
c
)az=

F z

m

A is a functional of the full trajectory x(t) with dimension of m/s2. 

For a ≫ a0, A → a = d2x/dt2 (Newton’s 2nd Law).



In MOND no full theory yet setting A from varying S but two general results (Milgrom 1994):

(A) IF we impose the Newtonian and MOND limits at high and low accelerations +
 Galilei Invariance → Eq. of motions are the same in all inertial frames:

Theory is time non-local: 

Accelerations at (x, t) depend on the full orbital history!
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A⃗ [ x⃗(t ); a0]=−∇⃗ ΦN

x⃗ (t )→ x⃗ (t )+ v⃗0 t

(1) MOND as Modified Inertia

A⃗ [ x⃗(t ), a0]≠F (
di x⃗

dt i
; i=1 ,2 , ...N )

A is a functional of the full trajectory x(t) with dimension of m/s2. 

For a ≫ a0, A → a = d2x/dt2 (Newton’s 2nd Law).



In MOND no full theory yet setting A from varying S but two general results (Milgrom 1994):

(A) IF we impose the Newtonian and MOND limits at high and low accelerations +
 Galilei Invariance → Eq. of motions are the same in all inertial frames:

Theory is time non-local: 

Accelerations at (x, t) depend on the full orbital history!

(B) For purely circular orbits:                          holds exactly (e.g. RAR for disk galaxies) 

     The interpolation function is a derived concept valid for circular orbits.
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(1) MOND as Modified Inertia

A⃗ [ x⃗(t ); a0]=−∇⃗ ΦN

a⃗μ(
a
a0

)= g⃗N

x⃗ (t )→ x⃗ (t )+ v⃗0 t

A⃗ [ x⃗(t ), a0]≠F (
di x⃗

dt i
; i=1 ,2 , ...N )

A is a functional of the full trajectory x(t) with dimension of m/s2. 

For a ≫ a0, A → a = d2x/dt2 (Newton’s 2nd Law).
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Hints for building a modified inertia theory

Two remarkable numerical coincidences (Milgrom 1983a, Milgrom 1999):

a0∼
H 0⋅c

2π

a0∼
c2
√Λ/3
2π

H
0
 = Hubble constant → maybe a

0
(t) ~ H(t) ???

Λ = Cosmological constant → relation to Dark Energy???

IF this numerology has some deeper, fundamental meaning:
either the state of the Universe at large enters in local dynamics,
or the same parameters enters both Cosmology (Λ) and local dynamics (a

0
).
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(2) MOND as Non-Linear Modified Gravity

S=∫dt L=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ )

−
a0

2

8πG
F ( |⃗∇Φ|

2

a0
2 ) AQUAL (AQUAdratic Lagrangian)

Bekenstein & Milgrom (1984)

Lagrangian is quadratic in ∇Φ → 
standard Poisson’s equation
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(2) MOND as Non-Linear Modified Gravity

Principle of least Action: ∇⋅[μ (|⃗∇Φ|a0
) ∇⃗ Φ ]=4 πGρ

μ(√x)=
d F (x)

dx
x=
|⃗∇Φ|

2

a0
2

F is a free function (new degree of freedom) in L 
that is linked to the interpolation function μ or υ.

Modified Poisson’s Equation

−
a0

2

8πG
F ( |⃗∇Φ|

2

a0
2 )

S=∫dt L=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ ) Lagrangian is quadratic in ∇Φ → 

standard Poisson’s equation

AQUAL (AQUAdratic Lagrangian)
Bekenstein & Milgrom (1984)
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(2) MOND as Non-Linear Modified Gravity

∇⋅[μ (|⃗∇Φ|a0
) ∇⃗ Φ ]=4 πGρ in spherical symmetry only!a⃗=ν(

gN

a0

) g⃗N
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(2) MOND as Non-Linear Modified Gravity

∇⋅[μ (|⃗∇Φ|a0
) ∇⃗ Φ ]=4 πGρ

Important observational implications:

If MOND is due to modified gravity, the RAR 
of disk galaxies (which aren’t spherical) must be 
an approximate relation with intrinsic scatter.

If MOND is due to modified inertia, the RAR 
of disk galaxies holds exactly (circular orbits).

in spherical symmetry only!a⃗=ν(
gN

a0

) g⃗N
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Application of AQUAL: The Antennae Merger
Observations
Blue = Gas
Green = Stars

Simulations
Blue = Gas
Red = Stars

Tiret & Combes (2008)
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(3) MOND as Quasi-Linear Modified Gravity

−1
8πG [2 ∇⃗ Φ⋅⃗∇ ΦN−a0

2Q (|⃗∇ΦN|
2

a0
2 ) ]

Single gravitational potential Φ
S=∫dt L=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ )

Two potentials: Φ
  
and Φ

N
!
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(3) MOND as Quasi-Linear Modified Gravity

−1
8πG [2 ∇⃗ Φ⋅⃗∇ ΦN−a0

2Q (|⃗∇ΦN|
2

a0
2 ) ]

Single gravitational potential Φ
S=∫dt L=∫dt d3 x (ρ V 2

2
−
|⃗∇Φ|

2

8πG
−ρΦ )

Two potentials: Φ
  
and Φ

N
!

Principle of least Action varying Φ, Φ
N
 and x → set of 3 equations (Milgrom 2010)

∇
2
ΦN=4 πGρ

∇
2
Φ=∇⃗⋅[ν (|⃗∇ΦN|/a0 ) ∇⃗ ΦN ]

a⃗=−∇⃗Φ

Standard, linear Poisson’s equation for Φ
N

Non-linear step: get Φ from Φ
N

Acceleration/force set by second potential Φ

ν(√x)=
dQ(x)

x
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Application of QUMOND: Formation of Galaxy Disks

Gas collapse → Exponential disk

Wittenburg+2020
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Summary on non-relativistic MOND theories:
(1) Modified Inertia (Milgrom 1994, 1999)

→ a = υ(g
N
/a0)gN

 holds for circular orbits only (for any geometry)

→ No calculations possible beyond circular orbits (so far)

(2) Non-linear Mod. Gravity: AQUAL (Bekenstein & Milgrom 1984) 

→ a = υ(g
N
/a0)gN

 applies in spherical symmetry (for any orbit)

→ Numerical simulations on binary galaxies → interactions & mergers

(3) Quasi-linear Mod. Gravity: QUMOND (Milgrom 2010)

→ a = υ(g
N
/a0)gN 

applies in spherical symmetry (for any orbit)

→ Full hydrodynamical simulations of galaxy formation!



  

Roadmap of the Lecture

1. The general MOND paradigm

2. Non-relativistic MOND theories

3. Relativistic MOND theories
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Lovelock-Grigore Theorem: 

GR (+Λ) is the only theory that satisfy these assumptions:

1- Geometry is Reimannian

2- The Action depends only on g
μυ 

3- It is diffeomorphism invariant

4- It is local

5- It leads to 2nd order field equations
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Many ways to build a relativistic version of MOND

Retain
Reimann

Abandon 
Reimann

Finsler 
Geometry
(Namoumi 15)
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Many ways to build a relativistic version of MOND

Retain
Reimann

Abandon 
Reimann

Only the 
metric

Finsler 
Geometry
(Namoumi 15)

Add new 
fields

TeVeS
(Bekenstein 04)

BiMOND
(Milgrom 09)



Horava
Gravity

(Sanders 11)
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Many ways to build a relativistic version of MOND

Retain
Reimann

Abandon 
Reimann

Only the 
metric

Finsler 
Geometry
(Namoumi 15)

Add new 
fields

Retain
Invariance

Break
Invariance

Nonlocal
MOND

(Deffayet+11)

TeVeS
(Bekenstein 04)

BiMOND
(Milgrom 09)

Retain 
Locality

Break 
Locality

F(R)
Theories

NO GO
for MOND

Emergent 
Gravity

(Verlinde 17)
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Bekenstein’s TeVeS (Tensor-Vector-Scalar):
- Tensor g

μν
 → Einstein’s metric

- Vector Aμ → to get the “right” gravitational lensing (Sanders 1997)

- Scalar Φ → to get the DM effect for matter (Bekenstein & Milgrom 1984)

- Free Function → interpolation function (similar to AQUAL, QUMOND)



Federico Lelli (INAF - Arcetri Astrophysical Observatory)                                     Alternatives to Dark Matter

Bekenstein’s TeVeS (Tensor-Vector-Scalar):
- Tensor g

μν
 → Einstein’s metric

- Vector Aμ → to get the “right” gravitational lensing (Sanders 1997)

- Scalar Φ → to get the DM effect for matter (Bekenstein & Milgrom 1984)

- Free Function → interpolation function (similar to AQUAL, QUMOND)

Matter follows a “physical metric” given by a disformal transformation:

~gμ ,ν=gμ ,ν e
−2ϕ
+Aμ Aν e

−2ϕ
−Aμ Aν e

2ϕ
=e−2ϕ gμ , ν−2 Aμ A ν sinh(2ϕ)



Application: Bullet Cluster in Bekenstein’s TeVeS

Clowe+2006

X-rays + Lensing Map

MOND model with 2eV υ (Angus+2007):
Red: Observed lensing convergence map
Black: best-fit MOND+υ convergence map
Blue: total surface densities (baryons+υ).

High collision speed (~4500 km/s) is rare 
in ΛCDM but natural in MOND.
(Hayashi & White 2006; Farrar & Rosen 2006; 
Angus+2007; Angus & McGaugh 2008)
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TeVeS is ruled out by kilonova discovery (GW170817)

Gravitational Wave signal immediately 
followed by gamma-ray signal:
|c

GW
 – c

EM
| < 10-15 c

EM 

But
 
TeVeS predicted c

GW 
≠ c

EM
!
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New TeVeS-like theory (Skordis & Zlosnik 2020):

Bμ=e−2ϕ Aμ
Combine scalar & vector in new time-like vector:

B2
=gμ νBμBν=−e−2ϕsuch that
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New TeVeS-like theory (Skordis & Zlosnik 2020):

Bμ=e−2ϕ Aμ

The Action has free terms that are fixed requiring 5 conditions:

(1) General Relativity when ∇Φ ≫ a
0 
in quasi-static situations

(2) MOND/AQUAL when ∇Φ ≪ a
0 
in quasi-static situations

(3) Gravitational lensing without dark matter

(4) Tensor mode of GW propagates at the speed of light

(5) FLRW background with the same expansion history as LCDM 

Combine scalar & vector in new time-like vector:

B2
=gμ νBμBν=−e−2ϕsuch that
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CMB power spectrum 
(both temperature and 
polarization) and 
matter power spectrum 
P(k) similar to LCDM. 

Gravitational lensing 
and c

GW
=c

EM 
are fine.

Lots of work left to do: 
non-linear formation of 
LSS, galaxy 
formation...

New TeVeS-like theory (Skordis & Zlosnik 2020):



  

CMB radiation
(COBE, WMAP, Planck)

(2dF, SDSS)

Success of MOND at different scales

Large Scale Structure

Small Scales (~1-100 kpc) Intermediate Scales (~1-5 Mpc) Large Scales (>100 Mpc)

Rotation-Supported Galaxies
(spirals & dwarf irregulars)

Galaxy Groups

Galaxy ClustersDispersion-Supported Galaxies
(ellipticals & dwarf spheroidals)

Andromeda

Messier 87

Stephan’s Quintet

Abell 1689

Missing Baryons?
Sterile neutrinos?
Deeper/better theory?

??
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