# The Tully-Fisher Relation

# Federico Lelli

# **KES** Lecture



© Robert Gendler

## Outline

1. Brief Historical Introduction

The HI 21-cm line and the Tully-Fisher relation

2. Physics Behind the TF relation General implications for dark matter in galaxies

3. The TF relation in a LCDM context General implications on missing baryons & more

## 1. Introduction

#### The 21-cm line of Atomic Hydrogen

- Hyperfine structure of Atomic Hydrogen (HI)
- Predicted to be observable by Van de Hulst (1944)
- First detected by Ewen & Percell (1951)





Ewen installing his antenna out of a window at Lyman Lab in Harvard

## HI obs with single-dish radio telescopes Resolution = $\lambda/D$ if $\lambda$ =21cm, we need a big D!

## HI obs with single-dish radio telescopes Resolution = $\lambda/D$ if $\lambda$ =21cm, we need a big D!

NRAO 91m and 43m telescopes, used by Fisher & Tully (1975)



 $D = 91 \text{ m} \rightarrow R \sim 8'$ . Cannot resolve galaxies outside LG! But the spectral resolution was good (down to ~5 km/s)





- HI Line-Width:  $W_{20}$  (20% of peak flux) ~2 rotation velocity



- HI Line-Width:  $W_{20}$  (20% of peak flux) ~2 rotation velocity - Systemic Velocity / Redshift:  $z \sim V_{sys}/c$  for low  $V_{sys}$ 



- HI Line-Width:  $W_{20}$  (20% of peak flux) ~2 rotation velocity

- Systemic Velocity / Redshift:  $z \sim V_{sys}/c$  for low  $V_{sys}$
- Total HI flux / HI mass:  $M_{HI} = 236 D^2 [Mpc] S_{HI} [mJy km/s]$





Absolute Magnitude (« Distance<sup>2</sup>)



STEP 1: Calibrate TF relation using galaxies with known distance (from Cepheids, TRGB, etc.)

Absolute Magnitude (« Distance<sup>2</sup>)



STEP 1: Calibrate TF relation using galaxies with known distance (from Cepheids, TRGB, etc.)

STEP 2: Measure HI line-width (radio) & apparent mag (optical/IR) from large surveys

Federico Lelli (ESO)

Absolute Magnitude (« Distance<sup>2</sup>)



HI Line-Width (Distance Independent)

#### **Classic Applications of the TF relation**

1-Measure Hubble constant

 $V_{sys} \sim H_0 D + V_{pec}$  at low z

 $H_0 = 80 \text{ km/s/Mpc}$  (Tully & Fisher 1977)

 $H_0 = 75 + -2 \text{ km/s/Mpc} \text{ (Tully+2016)}$ 



Federico Lelli (ESO)

**Classic Applications of the TF relation** 1-Measure Hubble constant 2-Study Galaxy Flows  $V_{\text{pec}} = (V_{\text{mod}} - H_0 D) / (1 + H_0 D/c)$  $V_{sys} \sim H_0 D + V_{pec}$  at low z  $H_0 = 80 \text{ km/s/Mpc}$  (Tully & Fisher 1977)  $V_{mod} = f(z, D, \Omega_m, \Omega_\Lambda)$  $H_0 = 75 + -2 \text{ km/s/Mpc} (\text{Tully}+2016)$ -3.000 < SGZ < 3.000 km/s[km/s/Mpc]  $H_{0} = 75$ 104 SGY [km/s] Parameter Hubble  $-1 \times 10^{4}$ 5000 104 104  $-1 \times 10^{4}$ Tully+2016 Velocity<sub>1s</sub> [km/s] SGX [km/s] Tully+2016

Federico Lelli (ESO)

The Tully-Fisher Relation

#### Peculiar Velocities & The Hubble Constant

 $\overline{V_{\text{pec}}} = (V_{\text{mod}} - H_0 D) / (1 + H_0 D/c) \qquad \overline{V_{\text{mod}}} = f(z, D, \Omega_m, \Omega_\Lambda)$ 

Fix  $\Omega_{\rm m}$  and  $\Omega_{\Lambda}$  (or equivalently  $q_0$ ), vary  $H_0$  and get different  $V_{\rm pec}$ 



Federico Lelli (ESO)

# 2. Physics Behind the Tully-Fisher relation

 $L_{\lambda}$  and  $W_{HI}$  are proxies for more fundamental quantities!

Goal: find the quantities that give the tighter relation

#### Luminosity ~ Stellar Mass

The TF relation is tigher in the NIR than in the optical (e.g. Aaronson+1979, Verheijen 2001, Ponomareva+2017)

#### Luminosity ~ Stellar Mass

The TF relation is tigher in the NIR than in the optical (e.g. Aaronson+1979, Verheijen 2001, Ponomareva+2017)

 $\Upsilon_*=M_*/L$  shows small galaxy-to-galaxy variations in the NIR (less sensitive to star-formation history, dust extinction, etc.)

#### Luminosity ~ Stellar Mass

The TF relation is tigher in the NIR than in the optical (e.g. Aaronson+1979, Verheijen 2001, Ponomareva+2017)

 $\Upsilon_*=M_*/L$  shows small galaxy-to-galaxy variations in the NIR (less sensitive to star-formation history, dust extinction, etc.)



Predicted  $\Upsilon_*$  -Color Relations from stellar population synthesis models  $\Upsilon_*^{[3.6]} \sim 0.5 M_{\odot}/L_{\odot}$  with ~30% scatter (e.g., Meidt+2014; Norris+2016; Schombert+2019)

#### Stellar Mass is not enough!

Stellar-Mass TF Relation



Federico Lelli (ESO)

#### Stellar Mass is not enough!

Stellar-Mass TF Relation



The Tully-Fisher Relation

Federico Lelli (ESO)

#### Baryonic Mass (stars+gas) is the key!

Stellar-Mass TF Relation

**Baryonic TF Relation** 



Federico Lelli (ESO)

## What's the HI line-width really measuring?



Line-of-Sight Velocity (km/s)

The HI line profile depends on  $\Sigma_{\rm HI}(R)$ ,  $V_{\rm rot}(R)$ , inclination!

Need to spatially resolve HI distribution and kinematics!

# HI obs with radio interferometers

 $R \sim \lambda/B$  with B=max distance between two antennas

## HI obs with radio interferometers $R \sim \lambda/B$ with B=max distance between two antennas





WSRT (Netherlands) HI resolution up to  $\sim 15''$ Typical surveys done at  $\sim 30''$  VLA (New Mexico) HI resolution up to ~2" Typical surveys done at 5"-10"

But HI interferometry is time costly! HI samples drop from  $\sim 18000$  objects with single-dish observations (Tully+2016) to  $\sim 200$  with interferometry (Lelli+2016).

#### HI distribution and kinematics



#### HI distribution and kinematics



#### Key Points:

- HI distribution is more extended than stellar one (typically by a factor of 2)
- HI kinematics is generally consistent with rotation (non-circular motions small)
- HI velocity dispersion is ~8-10 km/s  $\rightarrow$  negligible pressure support (unlike stars)

 $V_{rot} \sim V_{circ} = sqrt(R d\phi/dR)$ 

#### HI distribution and kinematics



#### How to derive a rotation curve:

- Divide galaxy into a set of concentric rings
- Deprojection from sky plane to galaxy plane

 $V_{l.o.s.} = V_{sys} + V_{rot} sin(i) cos(\theta)$ 

 $cos(\theta) = fnc(center, position angle)$ 



Federico Lelli (ESO)



Federico Lelli (ESO)



Why  $M_b$ - $V_{flat}$  relation is steeper? Rotation curve shapes! At high  $M_b$ : declining RCs  $\rightarrow V_{in} > V_{flat}$ At low  $M_b$ : rising RCs  $\rightarrow V_{in} < V_{flat}$ 

Inner velocities give shallower BTFR



Federico Lelli (ESO)



Federico Lelli (ESO)

The Tully-Fisher Relation



Solve Poisson's Equation for each baryonic component (i = stars, gas)  $\nabla^2 \Phi_i(R, z) = 4 \pi G \rho_i(R, z)$ Assume nominal disk thickness  $\rho_i(\mathbf{R}, \mathbf{z}) = \mu_i(\mathbf{R}) \mathbf{v}_i(\mathbf{z})$ Find expected circular velocity  $V_i^2(R, z=0)$   $\partial \Phi_i(R, z=0)$  $\partial R$ R Sum over all baryonic contributions

$$V_b^2(R) = (M/L)V_{star}^2 + V_{gal}^2$$

van Albada et al. (1985); Begeman (1987)

Federico Lelli (ESO)



If we assume that all galaxy disks are maximal, then BTFR is trivial!

 $V_{flat} = V_b(max) = \sqrt{\alpha G M_b/R}$ 

 $\alpha = O(1)$  due to disk geometry

Federico Lelli (ESO)

The Tully-Fisher Relation



If we assume that all galaxy disks are maximal, then BTFR is trivial!  $V_{flat} = V_b (max) = \sqrt{\alpha G M_b / R}$  $\alpha = O(1)$  due to disk geometry If you square this twice:  $V_{flat}{}^4 = V_b (max)^4 = (\alpha G)^2 \Sigma_b M_b$ 

Normalization set by  $\Sigma$ !

Federico Lelli (ESO)



If we assume that all galaxy disks are maximal, then BTFR is trivial!  $V_{flat} = V_b (max) = \sqrt{\alpha G M_b/R}$  $\alpha = O(1)$  due to disk geometry If you square this twice:  $V_{flat}{}^4 = V_b (max)^4 = (\alpha G)^2 \Sigma_b M_b$ Normalization set by  $\Sigma$ !

- Pre-90s:  $\Sigma$  thought to be constant for galaxy disks (Freeman's Law)
- Post-90s: LSB disks emerged (Schombert 1992; McGaugh 1994)
- Prediction: LSB galaxies should follow a different TF relation!

Federico Lelli (ESO)

#### The Tully–Fisher relation for low surface brightness galaxies: implications for galaxy evolution

M. A. Zwaan,<sup>1</sup> J. M. van der Hulst,<sup>1</sup> W. J. G. de Blok<sup>1</sup> and S. S. McGaugh<sup>2</sup>

<sup>1</sup>Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands <sup>2</sup>Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

1995



Federico Lelli (ESO)

The Tully-Fisher Relation

#### HSBs and LSBs lie on the same BTFR



Federico Lelli (ESO)

The Tully-Fisher Relation

## A galaxy triplet on the BTFR



Same  $M_{bar} \& V_{flat}$ but different SB

Different Rotation Curves & Mass Models

Tully & Verheijen (1997)

## The HSB – LSB dichotomy



#### **HSB galaxies:**

 Steeply rising rotation curves
Maximum disk hypothesis Realistic M<sub>\*</sub>/L.
Baryons dominate inner galaxy regions

#### LSB galaxies:

- Slowly rising rotation curves
- DM dominates at small R

Federico Lelli (ESO)

The Tully-Fisher Relation

$$\frac{V_{rot}^2}{R} = \frac{\alpha G M_{tot}}{R^2}$$

$$\frac{V_{rot}^2}{R} = \frac{\alpha G M_{tot}}{R^2} \longrightarrow V_{rot}^4 = (\alpha G)^2 \frac{\Sigma_b}{f_b^2} M_b \qquad f_b = \frac{M_b}{M_{tot}}$$

$$\frac{V_{rot}^2}{R} = \frac{\alpha G M_{tot}}{R^2} \longrightarrow V_{rot}^4 = (\alpha G)^2 \frac{\Sigma_b}{f_b^2} M_b \qquad f_b = \frac{M_b}{M_{tot}}$$

The tightness of the BTFR implies that  $\frac{\Sigma_b}{f_b^2} \simeq const$ 

<u>Fine-tuning</u> problem at <u>fixed</u> baryonic mass: As the average baryonic surface density decreases, the DM content must increase by a precise amount.

#### Early-type galaxies (E and S0) follow BTFR!



ETGs with outer, extended HI discs (Serra+2012, den Heijer 2015)

Federico Lelli (ESO)

# 3. The Tully-Fisher relation in a LCDM context

(1) 
$$M_{\Delta} = \frac{4\pi}{3} R_{\Delta}^3 \cdot \Delta \cdot \rho_{crit} \qquad \rho_{crit} = \frac{3H_0^2}{8\pi G}$$

Cosmological definition of dark matter halo mass (typically  $\Delta$ =200)

(1) 
$$M_{\Delta} = \frac{4\pi}{3} R_{\Delta}^3 \cdot \Delta \cdot \rho_{crit} \qquad \rho_{crit} = \frac{3H_0^2}{8\pi G}$$

Cosmological definition of dark matter halo mass (typically  $\Delta$ =200)

(2) 
$$\frac{V_{\Delta}^2}{R_{\Delta}} = \frac{GM_{\Delta}}{R_{\Delta}^2} \xrightarrow{(1)+(2)} M_{\Delta} = \sqrt{\frac{2}{\Delta} \frac{1}{GH_0}} V_{\Delta}^3$$

TF-like relation for DM halos

(1) 
$$M_{\Delta} = \frac{4\pi}{3} R_{\Delta}^3 \cdot \Delta \cdot \rho_{crit} \qquad \rho_{crit} = \frac{3H_0^2}{8\pi G}$$

Cosmological definition of dark matter halo mass (typically  $\Delta$ =200)

(2) 
$$\frac{V_{\Delta}^2}{R_{\Delta}} = \frac{GM_{\Delta}}{R_{\Delta}^2} \xrightarrow{(1)+(2)} M_{\Delta} = \sqrt{\frac{2}{\Delta}} \frac{1}{GH_0} V_{\Delta}^3$$

TF-like relation for DM halos

To measurable quantities:

$$F_{b} = \frac{M_{b}}{M_{\Delta}} \qquad F_{V} = \frac{V_{flat}}{V_{\Delta}}$$

$$M_{b} = \sqrt{\frac{2}{\Delta} \frac{1}{GH_{0}}} F_{b} F_{V}^{-3} V_{flat}^{3}$$

(1) 
$$M_{\Delta} = \frac{4\pi}{3} R_{\Delta}^3 \cdot \Delta \cdot \rho_{crit} \qquad \rho_{crit} = \frac{3H_0^2}{8\pi G}$$

Cosmological definition of dark matter halo mass (typically  $\Delta$ =200)

(2) 
$$\frac{V_{\Delta}^2}{R_{\Delta}} = \frac{GM_{\Delta}}{R_{\Delta}^2} \xrightarrow{(1)+(2)} M_{\Delta} = \sqrt{\frac{2}{\Delta}} \frac{1}{GH_0} V_{\Delta}^3$$

TF-like relation for DM halos

To measurable quantities: 
$$F_b = \frac{M_b}{M_\Delta}$$
  $F_V = \frac{V_{flat}}{V_\Delta}$   
 $M_b = \sqrt{\frac{2}{\Delta}} \frac{1}{GH_0} F_b F_V^{-3} V_{flat}^3$ 

Working Hypothesis:  $F_b = F_{cosmic}$  [CMB & galaxy clusters]

 $F_V = 1$  [surely wrong but O(1) is ok]

## **Baryonic Tully-Fisher Relation vs LCDM**



Working Hypothesis:  $F_b = F_{cosmic}$  [CMB & galaxy clusters]  $F_V = 1$  [surely wrong but O(1) is ok]

## **Baryonic Tully-Fisher Relation vs LCDM**



To fix normalization:  $F_b < F_{CMB} \rightarrow missing baryons$  (hot gas?) To fix slope:  $F_b$  must systematically vary with  $V_{flat}$  (or  $M_{200}$ ) Small scatter (<25%): additional fine-tuning problem!

Federico Lelli (ESO)

#### The Stellar Mass Function Problem



A constant  $M_*/M_h$  can't reproduce the observed stellar mass function!

#### The Stellar Mass Function Problem



Federico Lelli (ESO)

The Tully-Fisher Relation

(1) Assume  $M_*-M_h$  relation from Abundance Matching

(1) Assume  $M_*-M_h$  relation from Abundance Matching (2) Assume a DM halo profile (e.g., NFW)

(1) Assume  $M_*-M_h$  relation from Abundance Matching (2) Assume a DM halo profile (e.g., NFW)

(3) Assume  $M_{h}$ -c relation of DM halos (from sims)

- (1) Assume  $M_*-M_h$  relation from Abundance Matching
- (2) Assume a DM halo profile (e.g., NFW)
- (3) Assume  $M_h$ -c relation of DM halos (from sims)
- (4) Model the baryonic distribution with some recipe (e.g., angular momentum partition) or even better take it directly from the data (e.g. Desmond+2018)!

 $\rightarrow$  Calculate model rotation curves and BTFR!

#### **Basic AM models versus Observations**



#### MIXED RESULTS:

- Normalization is OK: Good!
- Strong curvature: Bad! Unavoidable:  $M_*$ - $M_h$  relation is non-linear in AM models!



Federico Lelli (ESO)

The Tully-Fisher Relation

#### BTFR scatter is also a key test!



## BTFR from hydrodynamical simulations



NIHAO zoom-in cosmological simulations of galaxy formation (Dutton+2017) BTFR curvature has almost disappeared and the scatter small. This is remarkable... but how is this possible? Where did the  $M_*/M_h$  scatter and the characteristic  $M_*$  go?

Federico Lelli (ESO)

Messages to take home: 1. TF relation is not just a distance indicator! It provides key information on baryons & DM in galaxies Messages to take home: 1. TF relation is not just a distance indicator! It provides key information on baryons & DM in galaxies

2. TF relation implies some fine-tuning problems: At fixed  $M_b$ , central DM fraction increases as  $\Sigma$  decreases As  $M_b$  decreases, missing baryons progressively increase Messages to take home: 1. TF relation is not just a distance indicator! It provides key information on baryons & DM in galaxies

2. TF relation implies some fine-tuning problems: At fixed  $M_b$ , central DM fraction increases as  $\Sigma$  decreases As  $M_b$  decreases, missing baryons progressively increase

3. A blessing and a curse for LCDM modelsNormalization and slope are almost OK. Success of AM.Curvature is not observed. Discrepancy with AM.Scatter is too small. But galaxy formation is stochastic!

## More Slides

## Slope~4 → Acceleration Scale



#### On dimensional grounds: $g_+ \sim V_f^4 / (GM_b)$

Federico Lelli (ESO)